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Abstract

Found in the collected works of Eisenstein are twenty continued fraction expansions. The
expansions have since emerged in the literature in various forms, although a complete historical
account and self-contained treatment has not been given. We provide one here, motivated by
the fact that these expansions give continued fraction expansions for modular forms. Eisenstein
himself did not record proofs for his expansions, and we employ only standard methods in
the proofs provided here. Our methods illustrate the exact recurrence relations from which the
expansions arise, and also methods likely similar to those originally used by Eisenstein to derive
them.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Two particularly striking examples of continued fraction expansions for the funda-
mental modular forms � and ϑ may be derived from Eisenstein’s continued fraction
expansions (found in [1–4]). The Dedekind �-function is a fundamental modular form
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of weight 1/2 for the full modular group �(1) defined by

�(�) = q1/12
∏
n�1

(1 − q2n),

where we adopt the original notation of Jacobi and define q = e�i�, � ∈ H, the complex
upper half-plane. For �(�) we derive the following continued fraction:

�(�) = q1/12

1+
q2

1 − q2−
q2

1 + q2+
q6

1 − q6−
q4

1 + q4+
q10

1 − q10−
q6

1 + q6+
q14

1 − q14− · · ·

(1)

The theta function is a modular form for the group �0(4) also of weight 1/2, and
is defined by

ϑ(q) =
∑
n∈Z

qn2
.

We find many continued fraction expansions relating to ϑ(q) in Eisenstein’s work,
including the following examples:

ϑ(q) = 1 + 2q

1−
q3

1−
q5 − q3

1−
q7

1−
q9 − q5

1−
q11

1−
q13 − q7

1− · · · , (2)

ϑ2(q) = 1 + 4q

q2 + 1−
q(q2 + 1)2

q4 + 1+
q3(q2 − 1)2

q6 + 1−
q3(q4 + 1)2

q8 + 1+
q5(q4 − 1)2

q10 + 1− · · · , (3)

where ϑ2(q) is a modular form of weight 1. The continued fraction on the right-hand
side of (3) is originally given by Eisenstein as an expansion for 2K/�, where K is the
complete elliptic integral of the first kind defined by

K =
∫ �/2

0

d�√
1 − k2 sin2 �

and k the elliptic modulus satisfying 0�k�1. (For a discussion of K and some basic
properties, see [18] for example.) To write (3), we employ the identity [18, §22.302]
relating K to ϑ2(q)

2K

�
= ϑ2(q).
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We derive some of the examples provided here from more general expansions given
by Eisenstein. For example we derive (1) from Eisenstein’s expansion

∏
n�0

1 − xqn

1 − yqn
= 1

1+
x − y

1 − q+
qy − x

1 + q+
q2x − qy

1 − q3+
q3y − qx

1 + q2+
q4x − q2y

1 − q5+ · · · , (4)

where either |q| < 1 and |y| < 1, or |q| > 1 and |x| < |q|. From (4) we also
derive continued fraction expansions for ϑ4(q) and ϑ2(q), modular forms of weight
1/2, where ϑ4(q) is defined by ϑ(−q), and ϑ2(q) is defined by the sum in ϑ taken
over numbers n + 1/2, n ∈ Z. These expansions for ϑ4(q) and ϑ2(q) are given in
Section 4.

Some of the continued fractions originally due to Eisenstein have since emerged in
various forms. Eisenstein’s continued fraction

∞∑
n=0

qn(n+1)/2 = 1

1−
q

1−
q2 − q

1−
q3

1−
q4 − q2

1−
q5

1−
q6 − q3

1− · · · (5)

was proved over 90 years later by Selberg as a consequence of results generalizing
the Rogers–Ramanujan identities [17]. Selberg’s continued fraction can also be derived
from Eisenstein’s more general expansion for a partial theta series, given by

∞∑
n=0

qn2
xn = 1

1−
qx

1−
(q3 − q)x

1−
q5x

1−
(q7 − q3)x

1−
q9x

1−
(q11 − q5)x

1− · · · . (6)

Eisenstein’s continued fractions (5) and (6) may also be derived from more general
expansions given by Ramanujan, also due to Rogers and independently discovered by
Schur. Ramanathan [16] provides a treatment of these continued fractions from this
perspective, where the series in (6) appears as special case of a ratio of limiting values
of basic hypergeometric series, and the continued fraction expansion on the right-hand
side of (6) is recovered after appropriate substitution. We also offer a direct proof of
(6) in Section 3.

In addition to these appearances, Muir provides a treatment of Eisenstein’s continued
fractions in [14]. He reduces the number of Eisenstein’s continued fractions that are
independent to five, and derives the others from these (One may also consult [12,13].).
Three of these five are (3), (4), and (6), and another is the following continued fraction
for a Lambert series

∞∑
n=1

qn

1 − qn
= q

1 − q−
q(1 − q)2

1 − q2−
q2(1 − q)2

1 − q3−
q2(1 − q2)2

1 − q4 − · · · . (7)



282 A. Folsom / Journal of Number Theory 117 (2006) 279–291

This continued fraction was proved independently by Heine [8] using Euler’s method.
Using the same method, Heine proves another, 1 which can also be derived from (4).
The remaining independent Eisenstein continued fraction (originally given in the form
as in [14, (V.) p. 136]) is equivalent to

∞∑
n=0

(−1)nqn2 = 1

1+
q

1 − q+
q3

1 − q3+
q5

1 − q5+
q7

1 − q7+ · · · (8)

and can be found using Euler’s method.
Eisenstein himself did not provide proofs for his expansions, and in the third section

of this paper we provide direct proofs for (3), (4), and (6) to illustrate the exact
recurrence relations from which the expansions arise, and to illustrate methods likely
similar to those originally used by Eisenstein to derive them. We will see that (4) arises
from a recurrence relation between q-hypergeometric series. Heine did not provide a
proof for expansion (4) in his treatment of Eisenstein’s continued fractions in [8],
yet to establish (4) we will in fact use a variant of the recurrence relation given by
Heine [9]

2�1(a, b; c; q, z) = 2�1(a, bq; cq; q, z) + (1 − a)(c − b)z

(1 − c)(1 − cq) 2�1(aq, bq; cq2; q, z) (9)

to establish his well-known continued fraction for a ratio of q-hypergeometric series.
Heine’s continued fraction is a q-analogue of Gauss’ continued fraction for a ratio
of hypergeometric series [7], and many of Eisenstein’s continued fractions appear by
following methods used by Gauss, whose works Eisenstein began studying in 1842.
Before proceeding, we recall the notion of correspondence.

2. Correspondence

Given a continued fraction

b0(z) + a1(z)

b1(z)+
a2(z)

b2(z)+
a3(z)

b3(z)+ · · ·

with polynomial coefficients an(z) and bn(z), one can ask whether there is a formal
Laurent series L that corresponds to the continued fraction in the sense that the Laurent
expansions of the partial convergents An/Bn of the continued fraction agree with L

1 This appears on the bottom of p. 38 in [3], and as 14. in Section 4.
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up to a certain term. Using notation as defined in [10], if we define �(L) to be the
exponent of the smallest power of z in L with non-zero coefficient, and �(0) = ∞, then
a continued fraction is said to correspond to L at 0 if each partial convergent An/Bn

is meromorphic at the origin and

lim
n→∞ �(L − L(An/Bn)) = ∞,

where L(An/Bn) is the Laurent expansion for the partial convergent at z = 0. In this
case, L and L(An/Bn) agree up to the term involving zm, if m = �(L − L(An/Bn)).
We will use the following correspondence theorems, the first given in [10, Theorem
5.5A, p. 160], and the second given in [11, Theorem 12, p. 267].

Theorem 1 (Jones and Thron). Let {an(z)}∞n=1 and {bn(z)}∞n=0 be sequences of func-
tions meromorphic at the origin with an(z) �= 0. Let {Pn}∞n=0 be a sequence of non-zero
formal Laurent series satisfying the recurrence relations

Pn = L(bn(z))Pn+1 + L(an+1(z))Pn+2.

Then the continued fraction

b0(z) + a1(z)

b1(z)+
a2(z)

b2(z)+
a3(z)

b3(z)+ · · ·

corresponds to the formal Laurent series L = P0/P1 provided the following conditions
are satisfied for n�1:

�(L(bn)) + �(L(bn−1)) < �(L(an)), (10)

�(Pn/Pn+1) + �(L(bn−1)) < �(L(an)). (11)

Theorem 2 (Lorentzen). Let {an(z)}∞n=1 and {bn(z)}∞n=1 be polynomials with an(z) �= 0.
Let {Xn}∞n=1 be a sequence of non-zero formal Laurent series satisfying the recurrence
relations

Xn = bn(z)Xn−1 + an(z)Xn−2.

Then the continued fraction

a1(z)

b1(z)+
a2(z)

b2(z)+
a3(z)

b3(z)+ · · ·
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corresponds to the formal Laurent series L = −X0/X−1 provided the following con-
ditions are satisfied for n�1:

�(bn−1(z)) + �(bn(z)) < �(an(z)), (12)

�(bn(z)) < �(Xn/Xn−1). (13)

We remark as in [10] that both correspondence theorems hold provided the conditions
(10)–(13) hold for n sufficiently large.

3. Recurrence

In this section we will establish proofs of the remaining independent continued
fractions of Eisenstein, and will provide recurrence relations that give (3), (4) and (6).

Proof of (4). We begin by expanding the product in (4) into a sum by the q-binomial
theorem [6] given by

(az; q)∞
(z; q)∞

=
∞∑

n=0

(a; q)n

(q; q)n
zn,

where |z| < 1, |q| < 1. Here we use the q-Pochhammer symbol [6], defined by

(a; q)k =

⎧⎪⎪⎨
⎪⎪⎩

1, k = 0,

(1 − a)(1 − aq) · · · (1 − aqk−1), k = 1, 2, . . . ,

[(1 − aq−1)(1 − aq−2) · · · (1 − aq−k)]−1
, k = −1, −2, . . . ,

(1 − a)(1 − aq)(1 − aq2)(1 − aq3) . . . , k = ∞.

With z = y and a = x/y, y �= 0, we have for the product in (4)

∞∏
n=0

1 − xqn

1 − yqn
= 1 + (x − y)

(q − 1)
+ (x − y)(xq − y)

(q − 1)(q2 − 1)

+ (x − y)(xq − y)(xq2 − y)

(q − 1)(q2 − 1)(q3 − 1)
+ · · · . (14)

The series expansion in (14) also holds for y = 0 due to a well-known result of Euler
[5], so that we have (14) for all |y| < 1, |q| < 1. Next we provide a recurrence relation
satisfied by a certain family of q-hypergeometric series, which are defined by

2�1(a, b; c; q, z) =
∞∑

n=0

(a; q)n(b; q)n

(c; q)n(q; q)n
zn. (15)
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Specifically, we let

P0 = 2�1(q, x/y; q; q, yz)

= 1 + (1 − x/y)

(1 − q)
yz + (1 − x/y)(1 − qx/y)

(1 − q)(1 − q2)
(yz)2 + · · ·

= 1 + (x − y)

(q − 1)
z + (x − y)(xq − y)

(q − 1)(q2 − 1)
z2 + · · · ,

which is the series in (14) when z = 1. We let P1 = 1, and define for n�1 the
functions

P2n(z) = 2�1(q
n, qnx/y; q2n; q, yz),

P2n+1(z) = 2�1(q
n, qn+1x/y; q2n+1; q, yz) (16)

and for n�0,

a2n+1(z) = −zqn (1 − qn)(x − yqn)

(1 − q2n+1)(1 − q2n)
,

a2n+2(z) = −zqn (1 − qn+1)(y − xqn+1)

(1 − q2n+2)(1 − q2n+1)
.

We will prove the following:

Claim. For k�0,

Pk = Pk+1 + ak+1(z)Pk+2. (17)

One can easily verify that (17) holds for k = 0 and 1 using definition (15) of the
q-hypergeometric series. For k�2, we will use the relation

2�1(a, b; c; q, z) = 2�1(a, bq; cq; q, z) + (1 − a)(c − b)

(1 − c)(1 − cq)
z2�1(aq, bq; cq2; q, z) (18)

originally given by Heine [9] to establish his continued fraction for the ratio

2�1(a, b; c; q, z)/2�1(a, bq; cq; q, z). Relation (18) can be verified by equating co-
efficients of z. To establish (17) for k = 2n, n�1, we let a = qn, b = qnx/y, c = q2n,
and substitute yz for z in (18). For k = 2n + 1, n�1, we first use the fact that the q-
hypergeometric series (15) is unchanged by interchanging a and b. We first interchange
a and b in (18), and then substitute cq for c and bq for b. In this transformed identity,
we let a = qn, b = qnx/y, c = q2n, and substitute yz for z.
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We see that conditions (10) and (11) are satisfied, as

0 + 0 = �(L(bn)) + �(L(bn−1)) < �(L(an)) = 1,

0 + 0 = �(Pn/Pn+1) + �(L(bn−1)) < �(L(an)) = 1

for n�1, so we can apply the first correspondence theorem given in Section 2. Eval-
uating at z = 1 gives the continued fraction expansion

∏
n�0

1 − xqn

1 − yqn
= 1 −

(y−x)
(q−1)

1−
(xq−y)

(q2−1)

1−
q(yq−x)(q−1)

(q3−1)(q2−1)

1−
q(xq2−y)(q2−1)

(q4−1)(q3−1)

1− · · · . (19)

We obtain Eisenstein’s continued fraction (4) by taking the reciprocal of both sides of
(19), interchanging x and y, and simplifying. �

Proof of (6). We proceed similarly, and show that the family defined by

X2n =
∞∑

j=0

(q2(j+1); q2)nx
2n+j q−(2n+j)2+n(2n−1), (20)

X2n+1 =
∞∑

j=0

(q2(j+1); q2)nx
2n+1+j q−(2n+1+j)2+n(2n+1) (21)

for n�1, with

X−1 = −1, X0 =
∞∑

j=0

q−j2
xj , X1 =

∞∑
j=0

q−(j+1)2
xj+1,

satisfies the recurrence

Xn = bnXn−1 + anXn−2, (22)

where a2n = −x, a2n+1 = −x(1 − q2n), b2n = q2n−1 and b2n+1 = q2n for n�1, and
a1 = b1 = 1. This will give Eisenstein’s original continued fraction for X0 [2]. We
obtain (6) by replacing q by q−1, and simplifying. For j �0 we denote the coefficient
of xn+j in Xn by cn

j . That is, Xn = ∑
j �0 cn

j xn+j . We let cn
−1 = 0. It is easy to verify

(22) for n = 1. We note that for n�2, �(n) = n, so that by equating coefficients, (22)
is equivalent to the relations

q2n−1c2n−1
j+1 − c2n−2

j+1 = c2n
j (23)
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and

q2nc2n
j+1 − (1 − q2n)c2n−1

j+1 = c2n+1
j (24)

for j � − 1. To establish (23), for j = −1 we compute

q2n−1c2n−1
0 − c2n−2

0 = q2n−1(q2; q2)n−1q
−(2n−1)2+(n−1)(2n−1)

−(q2; q2)n−1q
−(2n−2)2+(n−1)(2n−3)

which we see equals zero after simplifying powers of q that appear. For j �0, we have

q2n−1c2n−1
j+1 − c2n−2

j+1

= q2n−1(q2(j+2); q2)n−1q
−(2n+j)2+(n−1)(2n−1)

−(q2(j+2); q2)n−1q
−(2n−1+j)2+(n−1)(2n−3)

= (q2(j+2); q2)n−1(q
−(2n+j)2+n(2n−1)

−q−(2n+j−1)2+(n−1)(2n−3))

= (q2(j+1); q2)nq
−(2n+j)2+2n(n−1)

= c2n
j .

We establish (24) similarly:

q2nc2n
0 − (1 − q2n)c2n−1

0 = q2n(q2; q2)nq
−(2n)2+n(2n−1)

−(1 − q2n)(q2; q2)n−1q
−(2n−1)2+(n−1)(2n−1)

= 0,

q2nc2n
j+1 − (1 − q2n)c2n−1

j+1 = q2n(q2(j+2); q2)nq
−(2n+1+j)2+n(2n−1)

−(1 − q2n)(q2(j+2); q2)n−1q
−(2n+j)2+(n−1)(2n−1)

= (q2(j+2); q2)n−1q
−(2n+j+1)2+n(2n+1)((1 − q2(j+n+1))

−(1 − q2n)q2j−2n+2)

= (q2(j+1); q2)nq
−(2n+j+1)2+n(2n+1)

= c2n+1
j .
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We verify that conditions (12) and (13) are satisfied, as �(bn) = 0, �(an+1) = 1, and
�(Xn/Xn−1) = 1 for n�1. �

Proof of (3). We prove Eisenstein’s continued fraction (3) in the same manner, and
show that the family defined by

X2n−2 = (−1)n−14q2n2−2n+1x2n−1(q4; q4)n−1

∞∑
j=0

(qx)j (q2(j+1); q2)n−1

(−q2(j+n); q2)n−1(q2(j+2n−1) + 1)
,

X2n−1 = (−1)n+14q2n2
(q2n + 1)x2n(q4; q4)n−1

×
∞∑

j=0

(qx)j (q2(j+1); q2)n−1

(−q2(j+n+1); q2)n−1(q2(j+2n) + 1)

for n�2, and

X−1 = −1, X0 = 4
∞∑

j=0

(qx)j+1

q2(j+1) + 1
, X1 = 4(q2 + 1)(qx)2

∞∑
j=0

(qx)j

q2(j+2) + 1

satisfies the recurrence relation (22), where we have a2n = −q2n−1(1 + q2n)2, b2n =
(q4n +1), a2n−1 = q2n−1(1−q2n−2)2x, b2n−1 = (q4n−2 +1) for n�1, and a1 = 4qx.
We obtain Eisenstein’s continued fraction for (3) by using the series expansion

2K/� = 1 + 4
∞∑

j=0

qj+1

q2(j+1) + 1

(see [19], for example). Let cn
j be the coefficient of xj+n+1 in Xn, where j �0. That

is, Xn = ∑
j �0 cn

j xj+n+1. We let cn
−1 = 0. For n = 1 in (22) we have

b1X0 + a1X−1 = 4(q2 + 1)

∞∑
j=1

(qx)j+1

q2(j+1) + 1
= X1.

We note that for n�0, �(Xn) = n + 1, so that for n > 1, (22) is equivalent to the
relations

(q2n + 1)(q4n + 1)c2n−1
j − (q2n + 1)2c2n−2

j = −q2n+1(q4n − 1)c2n
j−1 (25)

and

(q4n+2 + 1)c2n
j − (q2n − 1)c2n−1

j = q2n+1(q2n+2 + 1)c2n+1
j−1 (26)
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for j �0, n�1. To establish (25), we have

(q2n + 1)(q4n + 1)c2n−1
j − (q2n + 1)2c2n−2

j

= (q2n + 1)(q4n + 1)
(−1)n−1qj (q2(j+1); q2)n−1

(−q2(j+n+1); q2)n−1(q2(j+2n) + 1)

−(q2n + 1)2 (−1)n−1qj (q2(j+1); q2)n−1

(−q2(j+n); q2)n−1(q2(j+2n−1) + 1)

= (q2n + 1)
(−1)n−1qj (q2(j+1); q2)n−1

(−q2(j+n+1)n−1; q2)n−1

(
q4n + 1

q2(j+2n) + 1
− q2n + 1

q2(j+n) + 1

)

= −q2n(q4n − 1)
(−1)nqj (q2j ; q2)n

(−q2(j+n); q2)n(q2(j+2n) + 1)

= −q2n+1(q4n − 1)c2n
j−1.

We note that the product vanishes when j = 0. We establish (26) similarly:

(q4n+2 − 1)c2n
j − (q2n − 1)c2n−1

j

= (q4n+2 + 1)
(−1)nqj (q2(j+1); q2)n

(−q2(j+n+1); q2)n(q2(j+2n+1) + 1)

−(q2n − 1)
(−1)n−1qj (q2(j+1); q2)n−1

(−q2(j+n+1)n−1; q2)n−1(q2(j+2n) + 1)

= (−1)n−1qj (q2(j+1); q2)n−1

(−q2(j+n+1)n−1; q2)n−1(q2(j+2n) + 1)

×
(

(q4n+2 + 1)(q2(j+n) − 1)

(q2(j+2n+1) + 1)
− (q2n − 1)

)

= q2n(q2n+2 + 1)
(−1)n(q2j ; q2)n

(−q2(j+n+1); q2)n(q2(j+2n+1) + 1)

= q2n+1(q2n+2 + 1)c2n+1
j−1 .

Again, the product vanishes when j = 0. Conditions (12) and (13) are satisfied, as
�(bn) = 0, �(an) = 1, and �(Xn/Xn−1) = 1 for n�1. �

4. Examples

In this section we provide a list of continued fraction expansions for certain mod-
ular forms, as well as more general expansions that can be derived from Eisenstein’s
expansions.
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1. �(�) = q1/12

1+
q2

1−q2−
q2

1+q2+
q6

1−q6−
q4

1+q4+
q10

1−q10−
q6

1+q6+ · · ·
2. ϑ(q) = 1 + 2q

1−
q3

1−
q5−q3

1−
q7

1−
q9−q5

1−
q11

1−
q13−q7

1− · · ·
3. ϑ(q) = 1 + 2q

1−
q3

1+q3−
q5

1+q5−
q7

1+q7− · · ·
4. ϑ2(q) = 1 + 4q

q2+1−
q(q2+1)2

q4+1+
q3(q2−1)2

q6+1−
q3(q4+1)2

q8+1+
q5(q4−1)2

q10+1− · · ·
5. ϑ(q)−1

ϑ(q)+1 = q
1+q−

q3

1+q3−
q5

1+q5−
q7

1+q7− · · ·
6. ϑ4(q) = 1

1+
2q

1−q−
q

1+
q2

1−q3−
q2

1+
q3

1−q5+ · · ·
7. ϑ4(q) = 1 − 2q

1+
q3

1−q3+
q5

1−q5+
q7

1−q7+ · · ·
8. 1−ϑ4(q)

1+ϑ4(q)
= q

1−q+
q3

1−q3+
q5

1−q5+
q7

1−q7+ · · ·
9. ϑ2(q) = 2q1/4

1−
q2

q2+1−
q4

q4+1−
q6

q6+1−
q8

q8+1− · · ·
10.

∏
n�0

1−xqn

1−yqn = 1
1+

x−y
1−q+

qy−x
1+q+

q2x−qy

1−q3+
q3y−qx

1+q2+
q4x−q2y

1−q5+ · · ·

11.
∞∑

n=0
qn2

xn = 1
1−

qx
1−

(q3−q)x
1−

q5x
1−

(q7−q3)x
1−

q9x
1−

(q11−q5)x
1− · · ·

12.
∞∑

n=1

qn

1−qn = q
1−q

q(1−q)2

1−q2−
q2(1−q)2

1−q3−
q2(1−q2)2

1−q4−
q3(1−q2)2

1−q5− · · ·

13.
∞∑

n=0
qn(n+1)/2 = 1

1−
q

1−
q2−q

1−
q3

1−
q4−q2

1−
q5

1−
q6−q3

1− · · ·

14.
m−1∑
n=0

qn(n+1)/2 = 1
1−

q
q+1−

q2

q2+1− · · · qm−1

qm−1+1

15.∗
2m∑
n=0

�n2
xn = 1−x2m+1

1−
x

�2m−
(1−�2m−1)x

�2m−1− · · ·

· · · (1−�)x
�−

x
1−

(1−�2m)x

�2m− · · · (1−�2)x

�2−
x
�

16.∗
2m−1∑
n=0

�n2
xn = 1−x2m

1−
x

�2m−1−
(1−�2m−2)x

�2m−2−
x

�2m−3− · · ·

· · · (1−�2m−4)x

�2m−4− · · · (1−�2)x

�2−
x
� .

∗ Here, � is a primitive 2m + 1st root of unity, and � a primitive 2mth root of unity.
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