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Recall that Dyson’s rank of a partition rank(π) := largest part of π −#parts of π. Let

N(m,n) := p(n : rank m).

Lemma. We have that

R(w; q) :=
∞∑
n=0

∞∑
m=−∞

N(m,n)wmqn =
∞∑
n=0

qn
2

(wq; q)n(w−1q; q)n
.

Recall the q-Pochhammer symbol (a; q)n :=
∏n−1

j=0 (1− aqj), n ∈ N0 ∪ {∞}.

Proof. Exercise. □

Observe that with w = 1,

R(1; q) =
∞∑
n=0

(
∞∑

m=−∞

N(m,n)

)
qn =

∞∑
n=0

p(n)qn.

Hence
∞∑
n=0

qn
2

(q; q)2n
=

1

(q; q)∞
=

q
1
24

η(τ)
, a modular form*.

*up to mult. by q−1/24 (with q = e2πiτ , τ ∈ H).

With w = −1 we find

R(−1; q) =
∞∑
n=0

(pe(n)− po(n)) q
n =

∞∑
n=0

qn
2

(−q; q)2n
.

1Disclaimer. These are unpublished lecture notes of the author, rough in nature, with some abuse of nota-
tion, and which may contain typographical errors.

2Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002, USA,
afolsom@amherst.edu

.
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Here pe/o(n) := p(n : even/odd rank).

Question: is R(−1; q) also modular?

S. Ramanujan (1887-1920) in his last letter to G.H. Hardy (1920) defined 17 q-hypergeometric
series:

...I discovered very interesting funcitons recently which I call ‘Mock’ ϑ-functions.
Unlike the ‘False’ θ-functions (studied partially by Prof. Rogers...) they enter
into mathematics as beautifully as the ordinary theta functions.

f(q) :=
∞∑
n=0

qn
2

(−q; q)2n
as above, independent of later rank interpretation; order 3

ω(q) :=
∞∑
n=0

q2n(n+1)

(q; q2)2n+1

order 3

f0(q) :=
∞∑
n=0

qn
2

(−q; q)n
order 5

...

Note. Ramanujan did not define his notion of “order.” In hindsight we believe it is connected
to certain invariants of modular forms.

Other modular “Eulerian” (q-hypergeoemtric) series (not in the Last Letter):

Partition identity (above):

q−
1
24

∞∑
n=0

qn
2

(q; q)2n
=

q−
1
24

(q; q)∞
= η−1(τ),

which by theRHS is (nearly) modular (and byLHS is the generating function for p(n)),

Rogers-Ramanujan identities:

q−
1
60

∞∑
n=0

qn
2

(q; q)n
=

q−
1
60

(q; q5)∞(q4; q5)∞
,

q
11
60

∞∑
n=0

qn
2+n

(q; q)n
=

q
11
60

(q2; q5)∞(q3; q5)∞
,

which by the RHS are modular functions (weight 0). These are famously equivalent to
the (combinatorial) R-R identities p(n : parts 1, 4 (mod 5)) = p(n : superdistinct parts), and
similar from the second identity

Ramanujan:

. . . Suppose there is a function in the Eulerian form and suppose that all or an
infinity of points are exponential singularities, and also suppose that at these
points the asymptotic form of the function closes neatly . . .The question is:
Is the function taken the sum of two functions one of which is an ordinary
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theta function and the other a (trivial) function which is O(1) at all the points
e2mπi/n? The answer is it is not necessarily so. When it is not so I call the
function Mock ϑ-function. I have not proved rigorously that it is not neces-
sarily so. But I have constructed a number of examples. . .

Paraphrased: Suppose an Eulerian series has infinitely many exponential sin-
gularities with suitable asymptotic behavior. Is it the sum of a modular theta
function plus another which is bounded at roots of unity? Not necessarily,
and these are called Mock Theta Functions. I [Ramanujan] haven’t proved
this but have an example.

Note. We believe “by closes neatly” he means an asymptotic like the following for the first
Rogers-Ramanujan function:
With q = e−α, as α→ 0+,

∞∑
n=0

qn
2

(q; q)n
=

√
2

5−
√
5
exp

(
π2

15α
− α

60

)
+ o(1)

(and similar at other singularities). The point is apparently that the series in α in the ex-
ponential must be polynomial (finite terms) as opposed to infinite. Note also that o(1) may
be replaced by O(1).

Example (from Ramanujan’s Last Letter):

I have proved that if

f(q) = 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ · · ·

then

f(q) + (1− q)(1− q3)(1− q5) · · · (1− 2q + 2q4 − 2q9 + · · · ) = O(1)
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at all the points q = −1, q3 = −1, q5 = −1, q7 = −1, . . . , and at the same
time

f(q)− (1− q)(1− q3)(1− q5) · · · (1− 2q + 2q4 − · · · ) = O(1)

at all the points q2 = −1, q4 = −1, q6 = −1, · · · Also obviously f(q) = O(1)
at all the points q = 1, q3 = 1, q5 = 1, . . . And so f(q) is a mock ϑ-function.

Ramanujan’s example rephrased: Let b(q) := q
1
24η3(τ)/η2(2τ)(q = e2πiτ ).

Note. As appearing above,
∞∑

n=−∞

(−1)nqn2

=
(q; q)2∞
(q2; q2)∞

.

• The modular forms ±b(q), together with the 0 function, appear to“cut out” the
exponential singularities of f(q).

• That is, as q approaches any even order 2k root of unity singularity of f(q), then

f(q)− (−1)kb(q) ?
=O(1)

• That is, asymptotically, towards singularities,

mock theta±modular form
?
= bounded

Note. f(ζ) = O(1) for odd ordered roots of unity ζ. Proof: Exercise.

We attribute the following to Ramanujan:

Definition (Ramanujan). A mock theta function F of the complex variable q, defined
by an Eulerian (q-hypergeometric) series which converges for |q| < 1, satisfies

(1) infinitely many roots of unity are exponential singularities,

(2) for every root of unity ζ there is a modular form ϑζ(q) such that the difference
F (q)− qcϑζ(q) is bounded as q → ζ radially,

(3) there does not exist a single modular form ϑ(q) such that F (q)− qcϑ(q) is bounded
as q approaches any root of unity radially.

Towards the above,

Theorem (Watson, 1936). We have that

q−
1
24f(q) = 2

√
2π

α
q

4
3
1 ω
(
q21
)
+ 4

√
3α

2π

∫ ∞

0

sinh(αt)

sinh
(
3αt
2

)e− 3αt2

2 dt,

where q := e−α, β := π2/α, q1 := e−β (Re(α),Re(β) > 0).

Remark. With α = −2πiτ (and ℑ(τ) > 0 so that ℜ(α) > 0), and viewing

f(q)“ = ”f(τ), (q = e(τ)), ω(q21)“ = ”ω
(−1
2τ

)
, (q21 = e

(−1
2τ

)
),

Watson’s transformation shows a modular-like transformation of weight 1/2 under τ 7→ −1
2τ
,

with an error (integral).
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Note. We may use the notation e(u) := e2πiu (as above) throughout.

This heads towards Ramanujan’s (radial limit as q = −e−α → −1):

lim
α→0+

f(q) +

√
π

α
exp

(
π2

24α
− α

24

)
= 4.

Proof (Watson’s theorem, sketch). We have that (Exercise)

f(q) =
2

(q; q)∞

∑
n∈Z

(−1)nq
n(3n+1)

2

1 + qn
,

ω(q) =
1

(q2; q2)∞

∑
n∈Z

(−1)nq3n(n+1)

1− q2n+1
.

The idea is to use the Residue Theorem creatively / carefully:
(1) find a function such that when integrated around a boundary yields f(q) as its residue

sum on one hand:

1

2πi

(∫ ∞−ic

−∞−ic

+

∫ −∞+ic

∞+ic

)
π

sin(πz)

exp(−3αz2/2)
cosh(αz/2)

dz
residue theorem

=
∑
m∈Z

Res(integrand, z = m)

= π
∑
m∈Z

exp(−3αm2/2)
2e−αm/2

1 + e−αm︸ ︷︷ ︸
1

cosh(αm/2)

lim
z→m

(z −m)
2ieπiz

e2πiz − 1︸ ︷︷ ︸
1

sin(πz)

= 2
∑
m∈Z

(−1)mq
m(3m+1)

2

1 + qm
(q = e−α)

= f(q)(q; q)∞,

where c > 0 is small enough so that the zeros of sin(πz) (which occur at z = m,m ∈ Z) are
the only poles of the integrand between the lines forming the contour.
Exercise: the integral over the vertical edges of the contour yields a contribution of 0.

(2) compute the two integrals above directly on the other hand, using that
1

sin(πz)
=

−2i
∞∑
n=0

e(2n+1)πiz, use residue theorem again and shift contour (through saddle points in the

quadratic exponential appearing exp((2m + 1)πiz − 3αz2/2)). Eventually (with the known

transformation properties of η(τ) = q
1
24 (q; q)∞) this yields a modular-like transformation law

(sim. to modular theta functions). Each integral (eventually) realizes (part of) ω(q21) (as a
residue sum) and the “error” integral. □
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Ramanujan’s claim revisited:

F-Ono-Rhoades: As q → −1, we have

f(−0.994) ∼ −1 · 1031, f(−0.996) ∼ −1 · 1046, f(−0.998) ∼ −6 · 1090 . . .
and

q −0.990 −0.992 −0.994 −0.996 −0.998
f(q) + b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .

.

suggesting
lim
q→−1

(f(q) + b(q)) = 4.

As q → i, we have

q 0.992i 0.994i 0.996i
f(q) 2 · 106 − 4.6 · 106i 2 · 108 − 4 · 108i 1.0 · 1012 − 2 · 1012i

f(q)− b(q) ∼ 0.05 + 3.85i ∼ 0.04 + 3.89i ∼ 0.03 + 3.92i

suggesting
lim
q→i

(f(q)− b(q)) = 4i.

What are the O(1) constants in

lim
q→ζ

(f(q)− (−1)kb(q)) = O(1)?

Where do they come from?

Recall that f(q) = R(−1; q). We prove more generally (letting ζN := e2πi/N)

Theorem (F-Ono-Rhoades). Let 1 ≤ a < b, 1 ≤ h < k with gcd(a, b) = gcd(h, k) = 1, b|k
and h′ ∈ Z with hh′ ≡ −1 (mod k). Then, as q → ζkh radially within the unit disc, we have
that

lim
q→ζkh

(
R (ζab ; q)− ζ−a2h′k

b2 C (ζab ; q)
)
= − (1− ζab )

(
1− ζ−a

b

)
U
(
ζab ; ζ

h
k

)
.

Here

U(w; q) :=
∞∑
n=1

∑
m∈Z

u(m,n)wmqn
[Exercise]

=
∞∑
n=0

(−wq; q)n(−w−1q; q)nq
n+1,

where u(m,n) := #{strongly unimodal sequences of size n and rank m} (Ex. 1+2+6+4+2
is a s.u.s. of size 15 and rank 0), and

C(w; q) =
∞∑
n=0

∑
m∈Z

M(m,n)wmqn =
∞∏
n=1

(1− qn)

(1− wqn)(1− w−1qn)
,

where M(m,n) := p(n : crank m).

Note. U(ζab ; ζ
h
k ) is a convergent, finite, sum (Exercise).

Formally: A s.u.s. {aj}sj=1 of size n is such that 0 < a1 < a2 < · · · < ar > ar+1 > · · · > as > 0
and

∑s
j=1 aj = n, and its rank is s − 2r + 1, the difference between number of terms after

and before the peak.
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The crank of partition is its largest part if it has no 1s, and is the difference between (the
number of parts larger than the number of 1s) and (the number of 1s) otherwise.

Corollary (F-Ono-Rhoades). Towards even order 2k roots of unity ζ, we have (Ramanujan’s
claim, and more explicitly)

lim
q→ζ

(f(q)− (−1)kb(q)) = −4U(−1; ζ), a convergent, finite sum.

(This is the case a/b = 1/2 of the theorem above.)

Proof: uses the theory of harmonic Maass forms, and incorporates quantum modular forms
(as in next two lectures).

Major Question: How do the mock theta functions fit into the theory of modular forms?

• The above starts to indicate some of the place of the mock theta functions in the theory
modular forms, “asymptotically.”
• However, the F-O-R asymptotic results and other newer results towards how they fit in
“modularly” were not proved until recently using a more overarching theory of harmonic
Maass forms (which we will introduce shortly).

Watson’s transformation shows a modular-like transformation of weight 1/2 under τ 7→ −1
2τ
.

Roughly:

f(τ) = (∗)τ−
1
2ω
(−1
2τ

)
+ Error Integral ←→

{
f(−1

τ
) = (∗)τ 1

2ω
(
τ
2

)
+ Error Integral,

ω
(−1
2τ

)
= (∗)τ 1

2f(τ) + Error Integral.

F. Dyson (1987):
“...Somehow it should be possible to build [the mock theta functions] into a coherent group-
theoretical structure, analogous to the structure of modular forms...This remains a challenge
for the future...”

Decades later,
Zwegers (2001) defines the period integeral:

G(τ) := 2i
√
3

∫ i∞

−τ

g(z)√
−i(z + τ)

dz,

where

g(τ) := −
∞∑

n=−∞

(n+ 1
6
)q

3
2
(n+ 1

6
)2 = −1

6
(q

1
24 − 5q

25
24 + 7q

49
24 − · · · )

is a weight 3/2 modular theta function (more below).

Remark. The integral converges (even for τ ∈ Q) since g is a cusp form (i.e. g(τ) = O(q
1
24 )).
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With F (τ) := q−
1
24f(q),

A major theorem:

Theorem (Zwegers, 2001). The difference

H(τ) := F (τ)−G(τ)

transforms as a (component of a) weight 1/2 non-holomorphic (vector-valued) modular form.

In particular, with H(τ) := (H(τ), H1(τ), H2(τ))
T (and H1, H2 defined similar to H using

ω below)

H(τ + 1) =

 ζ−1
24 0 0
0 0 ζ3
0 ζ3 0

H(τ), H(−1
τ
) =
√
−iτ

 0 1 0
1 0 0
0 0 −1

H(τ).

Idea: Zwegers “corrects” Watson’s transformation for F by constructing the (non-holomorphic)
function G with the same exact error to modularity (“error integral”), and subtracting.

One gains modularity at the expense of losing holomorphicity.

H(τ)︸ ︷︷ ︸
Xnon-holomorphic

✓transforms like a modular form (no error)

:= q−
1
24

∞∑
n=0

qn
2

(−q; q)2n︸ ︷︷ ︸
✓holomorphic

Xerror term in modular transformation

− 2i
√
3

∫ i∞

−τ

g(z) dz√
−i(τ + z)︸ ︷︷ ︸

Xnon-holomorphic
Xerror term in modular transformation

To make this more precise, let

F(τ) = (F (τ), F1(τ), F2(τ))
T :=

(
q−

1
24f(q), 2q

1
3ω
(
q

1
2

)
, 2q

1
3ω
(
−q

1
2

))T
,

G(τ) := 2i
√
3

∫ i∞

−τ

(g(w), g0(w), −g2(w))T√
−i(w + τ)

dw =: (G(τ), G1(τ), G2(τ))
T ,

H(τ) := F(τ)−G(τ) =: (H(τ), H1(τ), H2(τ))
T

(so that e.g. H1(τ) = F1(τ)−G1(τ) where G1(τ) = 2i
√
3
∫ i∞
−τ

g0(w)√
−i(w+τ)

dw), with

g0(τ) :=
∑
n∈Z

(−1)n
(
n+ 1

3

)
q

3
2(n+

1
3)

2

, g2(τ) :=
∑
n∈Z

(
n+ 1

3

)
q

3
2(n+

1
3)

2

.

Note. Notation (indexing of functions) here is slightly different than in Zwegers.
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Proof (Zwegers’ theorem, sketch).

G(−1
τ
) = 2i

√
3

∫ i∞

1/τ

g(z)√
−i(z − 1

τ
)
dz

z 7→−1/u
= 2i

√
3

∫ 0

−τ

g(−1/u)u−2√
−i(− 1

u
− 1

τ
)
du

modularity of g
= 2i

√
3
√
−iτ

∫ 0

−τ

g0(u)√
−i(u+ τ)

du

= 2i
√
3
√
−iτ

(∫ i∞

−τ

−
∫ i∞

0

)
g0(u)√
−i(u+ τ)

du,

using that

(g0(−1/τ), g(−1/τ), g2(−1/τ))T = −(−iτ)
3
2

(
0 1 0
1 0 0
0 0 −1

)
(g0(τ), g(τ), g2(τ))

T .

I.e.,

G(−1
τ
)−
√
−iτG1(τ) = −

√
−iτ · 2i

√
3

∫ i∞

0

g0(u)√
−i(u+ τ)

du.(1)

OTOH let

j0(τ) :=

∫ ∞

0

e3πiτt
2 sin(2πτt)

sin(3πτt)
dt

as in Watson, which is equivalent to

F (−1
τ
)−
√
−iτF1(τ) =

√
−iτ4

√
3j0(

−1
τ
)).(2)

Mittag-Leffler partial fraction theory (long calculation) on sinh(2πv)/ sinh(3πv) and the
integral identity ∫ ∞

−∞

e−πtw2

w − ir
dw = πir

∫ ∞

0

e−πr2w

√
w + t

dw

which holds for r ∈ R\{0} eventually leads to the identity (also using modularity of g(τ))

4
√
3j0(

−1
τ
) = −2i

√
3

∫ i∞

0

g0(u)√
−i(u+ τ)

du,(3)

Subtracting (1) from (2) using (3) reveals that

H(−1
τ
) =
√
−iτH1(τ)

(where H1(τ) = F1(τ)−G1(τ)). □

Recall: Zwegers “corrects” Watson’s transformation for F by constructing the (non-holomorphic)
function G with the same exact error to modularity (“error integral”), and subtracting.

One gains modularity at the expense of losing holomorphicity.
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H(τ)︸ ︷︷ ︸
Xnon-holomorphic

✓transforms like a modular form (no error)

:= q−
1
24

∞∑
n=0

qn
2

(−q; q)2n︸ ︷︷ ︸
✓holomorphic

Xerror term in modular transformation

− 2i
√
3

∫ i∞

−τ

g(z) dz√
−i(τ + z)︸ ︷︷ ︸

Xnon-holomorphic
Xerror term in modular transformation

This modular decomposition H = F −G was reminiscent of

Definition (Bruinier-Funke, 2004). A harmonic Maass form of weight k ∈ 1
2
Z on Γ := Γ0(N)

(where 4 | N if k ∈ 1
2
Z− Z) is a smooth M : H→ C satisfying

(1) transformation law: ∀A = ( a b
c d ) ∈ Γ, τ ∈ H,

M(Aτ) =

{(
c
d

)2k
ε−2k
d (cτ + d)kM(τ), k ∈ 1

2
Z− Z,

(cτ + d)kM(τ), k ∈ Z,

(
εd :=

{
1, d ≡ 1 (mod 4),

i, d ≡ 3 (mod 4),

)

(2) harmonic: ∆kM = 0, where ∆k︸︷︷︸
weight k Laplacian operator

:= −y2
(

∂2

∂x2 +
∂2

∂y2

)
+ iky

(
∂
∂x

+ i ∂
∂y

)
(τ = x+ iy)

(3) M satisfies a suitable growth condition in the cusps. I.e., at ∞,∃ a polynomial
PM(τ) ∈ C[q−1] such that

M(τ)− pM(τ) = O(e−ϵy)

as y →∞ for some ϵ > 0.

Lemma. Let M be a HMF of weight k ∈ 1
2
Z\{1} w.r.t. Γ0(N). Then M has the Fourier

expansion (at ∞):

M(τ) =
∑

n≫−∞

c+M(n)qn +
∑
n<0

c−M(n)Γ(1− k,−4πny)qn.

(Similar expansions hold at other cusps.)

Here, the incomplete Gamma function is

Γ(s, z) :=

∫ ∞

z

e−tts
dt

t
,

(ℜ(s) > 0, z ∈ C; or s ∈ C, z ∈ H; analytically continued in s via a functional equation).

Proof (sketch). Condition (1) ⇒

M(τ) =:
∑
n∈Z

aM(n, y)e (nx) .

Applying ∆k (and using cond. (2)), we find that the Fourier coefficients C(2πny) := aM(n, y)
satisfy the differential equation

∂2

∂w2
C(w)− C(w) +

k

w

(
∂

∂w
C(w) + C(w)

)
= 0.
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For n ̸= 0 there are two linearly independent solutions: e−w and Γ(1 − k,−2w)e−w. The
restrictions in summation in the lemma follow from Γ(s, x) ∼ xs−1e−x as |x| → ∞ and
cond. (3). □

Definition. We call
M+(τ) :=

∑
n≫−∞

c+M(n)qn

the holomorphic part of the wt. k HMF M , and

M−(τ) :=
∑
n<0

c−M(n)Γ(1− k,−4πny)qn

the non-holomorphic part of the wt. k HMF M .

Example. The (normalized) mock theta function q−1f(q24) is the holomorphic part of the
HMF

H(24τ) := F (24τ)−G(24τ)

of weight 1/2 on Γ0(144) (and char. χ12 :=
(
12
·

)
).

Attributed to Zwegers,

Theorem (Zwegers). Ramanujan’s mock theta functions are* hol. parts of weight 1/2 HMFs.
*That is, if m is one of Ramanujan’s mtf ’s, then for some c ∈ Q and d ∈ C,

m(τ) = qcM+(τ) + d,

where M+ is the holomorphic part of a weight 1/2 HMF.

Following Zagier,

Definition. A mock modular form of weight k is the holomorphc part M+ of a HMF of
weight k for which M− is nontrivial.
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