BUILDING BRIDGES: 6TH EU/US SUMMER SCHOOL & WORKSHOP ON AUTOMORPHIC FORMS AND RELATED TOPICS (BB6) CIRM MARSEILLE, SEPTEMBER 2-13, 2024

HARMONIC MAASS FORMS AND MOCK MODULAR FORMS: LECTURE 3 NOTES¹

AMANDA FOLSOM²

Reference. K. Bringmann, A. Folsom, K. Ono, L. Rolen, *Harmonic Maass Forms and Mock Modular Forms: Theory and Applications*, AMS Colloquium Publications, 64. American Mathematical Society, Providence, RI, 2018. 391pp.

(and references therein).

Review or introduce as needed p1-3: Recall Ramanujan's mock ϑ -function (1920)

$$f(q) := \sum_{n=0}^{\infty} \frac{q^{n^2}}{(-q;q)_n^2}.$$

Major Question: (Dyson's challenge) how do the mock theta functions fit into the theory of modular forms?

Recall

Theorem (Watson, 1936). We have that

$$q^{-\frac{1}{24}}f(q) = 2\sqrt{\frac{2\pi}{\alpha}}q_1^{\frac{4}{3}}\omega\left(q_1^2\right) + 4\sqrt{\frac{3\alpha}{2\pi}}\int_0^\infty \frac{\sinh(\alpha t)}{\sinh\left(\frac{3\alpha t}{2}\right)}e^{-\frac{3\alpha t^2}{2}}dt,$$

where $q := e^{-\alpha}, \beta := \pi^2/\alpha, q_1 := e^{-\beta} (\operatorname{Re}(\alpha), \operatorname{Re}(\beta) > 0).$

Zwegers (2001) defines the period integeral:

$$G(\tau) := 2i\sqrt{3} \int_{-\overline{\tau}}^{i\infty} \frac{g(z)}{\sqrt{-i(z+\tau)}} dz,$$

where

$$g(\tau) := -\sum_{n=-\infty}^{\infty} (n+\frac{1}{6})q^{\frac{3}{2}(n+\frac{1}{6})^2} = -\frac{1}{6}(q^{\frac{1}{24}} - 5q^{\frac{25}{24}} + 7q^{\frac{49}{24}} - \cdots)$$

is a weight 3/2 modular theta function.

 $^{^{1}}$ Disclaimer. These are unpublished lecture notes of the author, rough in nature, with some abuse of notation, and which may contain typographical errors.

²Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002, USA, afolsom@amherst.edu

Remark. The integral converges (even for $\tau \in \mathbb{Q}$) since g is a cusp form (i.e. $g(\tau) = O(q^{\frac{1}{24}})$). With $F(\tau) := q^{-\frac{1}{24}} f(q)$,

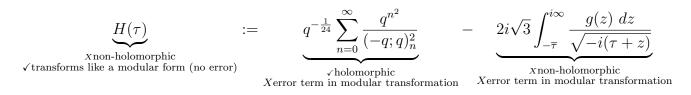
A major theorem: **Theorem** (Zwegers, 2001). *The difference*

 $H(\tau) := F(\tau) - G(\tau)$

transforms as a (component of a) weight 1/2 non-holomorphic (vector-valued) modular form. In particular, with $\mathbf{H}(\tau) := (H(\tau), H_1(\tau), H_2(\tau))$ (and H_1, H_2 defined similar to f, using ω)

$$\boldsymbol{H}(\tau+1) = \begin{pmatrix} \zeta_{24}^{-1} & 0 & 0\\ 0 & 0 & \zeta_3\\ 0 & \zeta_3 & 0 \end{pmatrix} \boldsymbol{H}(\tau), \quad \boldsymbol{H}(\frac{-1}{\tau}) = \sqrt{-i\tau} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix} \boldsymbol{H}(\tau).$$

Idea: Zwegers "corrects" Watson's transformation for F by constructing the (non-holomorphic) function G with the same exact error to modularity ("error integral"), and subtracting. One gains modularity at the expense of losing holomorphicity.



The modular decomposition F - G was reminiscent of

Definition (Bruinier-Funke, 2004). A harmonic Maass form of weight $k \in \frac{1}{2}\mathbb{Z}$ on $\Gamma := \Gamma_0(N)$ (where $4 \mid N$ if $k \in \frac{1}{2}\mathbb{Z} - \mathbb{Z}$) is a smooth $M : \mathbb{H} \to \mathbb{C}$ satisfying

(1) transformation law: $\forall A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \ \tau \in \mathbb{H},$

$$M(A\tau) = \begin{cases} \left(\frac{c}{d}\right)^{2k} \varepsilon_d^{-2k} (c\tau + d)^k M(\tau), & k \in \frac{1}{2}\mathbb{Z} - \mathbb{Z}, \\ (c\tau + d)^k M(\tau), & k \in \mathbb{Z}, \end{cases} \quad \begin{pmatrix} \varepsilon_d := \begin{cases} 1, & d \equiv 1 \pmod{4}, \\ i, & d \equiv 3 \pmod{4}, \end{cases} \end{cases}$$

(2) harmonic: $\Delta_k M = 0$, where weight k Laplacian operator $(\tau = x + iy)$ (2) harmonic: $\Delta_k M = 0$, where $\Delta_k = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + iky \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)$

(3) M satisfies a suitable growth condition in the cusps. I.e., at ∞, \exists a polynomial $P_M(\tau) \in \mathbb{C}[q^{-1}]$ such that

$$M(\tau) - p_M(\tau) = O(e^{-\epsilon y})$$

as $y \to \infty$ for some $\epsilon > 0$.

Lemma. Let M be a HMF of weight $k \in \frac{1}{2}\mathbb{Z}\setminus\{1\}$ w.r.t. $\Gamma_0(N)$. Then M has the Fourier expansion $(at \infty)$:

$$M(\tau) = \sum_{n \gg -\infty} c_M^+(n) q^n + \sum_{n < 0} c_M^-(n) \Gamma(1 - k, -4\pi ny) q^n.$$

(Similar expansions hold at other cusps.)

Here, the incomplete Gamma function is

$$\Gamma(s,z) := \int_{z}^{\infty} e^{-t} t^{s} \frac{dt}{t},$$

 $(\Re(s) > 0, z \in \mathbb{C}; \text{ or } s \in \mathbb{C}, z \in \mathbb{H}; \text{ analytically continued in } s \text{ via a functional equation}).$ Proof (lemma, sketch). Condition (1) \Rightarrow

$$M(\tau) =: \sum_{n \in \mathbb{Z}} a_M(n, y) e(nx)$$

Applying Δ_k (and using cond. (2)), we find that the Fourier coefficients $C(2\pi ny) := a_M(n, y)$ satisfy the differential equation

$$\frac{\partial^2}{\partial w^2}C(w) - C(w) + \frac{k}{w}\left(\frac{\partial}{\partial w}C(w) + C(w)\right) = 0.$$

For $n \neq 0$ there are two linearly independent solutions: e^{-w} and $\Gamma(1-k, -2w)e^{-w}$. The restrictions in summation in the lemma follow from $\Gamma(s, x) \sim x^{s-1}e^{-x}$ as $|x| \to \infty$ and cond. (3).

Definition. We call

$$M^+(\tau) := \sum_{n \gg -\infty} c_M^+(n) q^n$$

the holomorphic part of the wt. k HMF M, and

$$M^{-}(\tau) := \sum_{n < 0} c_{M}^{-}(n) \Gamma(1 - k, -4\pi ny) q^{n}$$

the non-holomorphic part of the wt. k HMF M.

Example. The (normalized) mock theta function $q^{-1}f(q^{24})$ is the holomorphic part of the HMF

$$F(24\tau) - G(24\tau)$$

of weight 1/2 on $\Gamma_0(144)$ (and char. $\chi_{12} := \left(\frac{12}{\cdot}\right)$).

Attributed to Zwegers,

Theorem (Zwegers). Ramanujan's mock theta functions are * hol. parts of weight 1/2 HMFs. *That is, if m is one of Ramanujan's mtf's, then for some $\alpha \in \mathbb{Q}$ and $c \in \mathbb{C}$,

$$m(\tau) = q^{\alpha} M^+(\tau) + c,$$

where M^+ is the holomorphic part of a weight 1/2 HMF.

Following Zagier,

Definition. A mock modular form of weight k is the holomorphe part M^+ of a HMF of weight k for which M^- is nontrivial.

Other examples of HMFs:

- Weakly hol. modular forms (which are not called mock modular as NHP is trivial)
- Non-holomorphic weight 2 Eisenstein series: $E_2^*(\tau) := \underbrace{E_2(\tau)}_{1-24\sum_{i=1}^{\infty} \sigma_1(n)q^n} \frac{3}{\pi y}$

"of manageable growth," i.e., $(E_2^*)^- := -3/(\pi y)$, $[\xi_2(E_2^*) = 3/\pi$, where ξ_k will be defined below].

• Zagier's weight 3/2 Hurwitz class number function:

$$\mathcal{H}(\tau) := -\frac{1}{12} + \sum_{n=1}^{\infty} \underbrace{h(n)}_{\text{(weighted) number of classes}} q^n + \frac{1}{4\sqrt{\pi}} \sum_{n=1}^{\infty} n\Gamma\left(-\frac{1}{2}, 4\pi n^2 y\right) q^{-n^2} + \frac{1}{8\pi\sqrt{y}},$$

"of manageable growth." [I.e., $\xi_{3/2}(\mathcal{H}) = -\theta/(16\pi)$.]

- Maass-Poincaré series
- from Dyson's ranks more generally:

Theorem (Bringmann-Ono, 2010). If 0 < a < c, then

$$q^{-\frac{\ell_c}{24}} \underbrace{R(\zeta_c^a; q^{\ell_c})}_{partition\ rank\ generating\ function} + \frac{i\sin\left(\frac{\pi a}{c}\right)\ell_c^{\frac{1}{2}}}{\sqrt{3}} \int_{-\overline{\tau}}^{i\infty} \frac{\Theta\left(\frac{a}{c}; \ell_c u\right)}{\sqrt{-i(\tau+u)}} du$$

is a harmonic Maass form of weight $\frac{1}{2}$ on Γ_c .

• others (see also Exercises) ...

We can directly relate to spaces of ordinary modular forms via the weight k xi-operator:

$$\xi_k := 2iy^k \overline{\frac{\partial}{\partial \overline{\tau}}}.$$

Theorem. We have that

$$\xi_{2-k} \colon H_{2-k}(\Gamma_0(N)) \twoheadrightarrow S_k(\Gamma_0(N)).$$

Moreover, for a weight 2 - k harmonic Maass form M of level N we have that

$$\xi_{2-k}(M(\tau)) = \xi_{2-k}(M^{-}(\tau)) = -(4\pi)^{k-1} \sum_{n=1}^{\infty} \overline{c_M(-n)} n^{k-1} q^n.$$

(Recall, $M^{-}(\tau) = \sum_{n < 0} c_{M}^{-}(n) \Gamma(1 - k, -4\pi ny) q^{n}$.)

Remark. One can show that $\ker(\xi_{2-k}) = \underbrace{M_{2-k}^!(\Gamma_0(N))}_{\text{weakly hol. modular forms (poles in cusps)}}$

Proof (Theorem, sketch). We have

$$\begin{split} \frac{\partial}{\partial \overline{\tau}} M &= \frac{\partial}{\partial \overline{\tau}} (M^+ + M^-) \\ &= \frac{\overline{\partial}}{\overline{\partial \overline{\tau}}} M^- \qquad (\text{since } \frac{\partial}{\partial \overline{\tau}} M^+ = 0) \\ &= \frac{\overline{\partial}}{\overline{\partial \overline{\tau}}} (\sum_{n < 0} c_M^-(n) \Gamma(k - 1, -4\pi n y) q^n) \\ &= (\sum_{n < 0} \overline{c_M^-(n) q^n} \frac{\partial}{\partial \overline{\tau}} \Gamma(k - 1, -4\pi n y)) \qquad (\text{since } \frac{\partial}{\partial \overline{\tau}} q^n = 0) \\ &= -\sum_{n < 0} \overline{c_M^-(n) q^n (-4\pi n) \frac{i}{2} (-4\pi n y)^{k-2} e^{4\pi n y}}, \qquad (\text{since } \frac{\partial}{\partial \overline{\tau}} = \frac{1}{2} (\partial_x + i \partial_y)), \end{split}$$

using that

$$\frac{\partial}{\partial w}\Gamma(\alpha,w) = -w^{\alpha-1}e^{-w}.$$

Thus,

$$\begin{aligned} \xi_{2-k}M &= -2iy^{2-k} \cdot \frac{-i}{2} \sum_{n < 0} \overline{c_M(n)} n^{k-1} (-4\pi)^{k-1} y^{k-2} e^{4\pi n y} \overline{q^n} \\ &= -(-4\pi)^{k-1} \sum_{n < 0} \overline{c_M(n)} n^{k-1} q^{-n} \\ &= -(4\pi)^{k-1} \sum_{n > 0} \overline{c_M(-n)} n^{k-1} q^n. \end{aligned}$$

as wanted. The modular transformation property follows from that of M and calculus, and is left as an Exercise.

Definition. The cusp form associated to the weight 2 - k HMF M

$$\xi_{2-k}(M(\tau)) = \xi_{2-k}(M^{-}(\tau)) = -(4\pi)^{k-1} \sum_{n=1}^{\infty} \overline{c_M^{-}(-n)} n^{k-1} q^n \in S_k(\Gamma_0(N))$$

is called the **shadow** of the mock modular form M^+ .

Example. The shadow of the (normalized) third order mock theta function $q^{-1}f(q^{24})$ is (up to constant multiple) the weight 3/2 theta function $g(24\tau) := -\sum_{n=-\infty}^{\infty} (n+\frac{1}{6})q^{36(n+\frac{1}{6})^2}$.

More generally,

Lemma. Let M be a weight 2 - k HMF. Suppose the mock modular form M^+ has shadow $\rho(\tau) = \sum_{n=1}^{\infty} c_{\rho}(n)q^n \in S_k(\Gamma_0(N))$. Then the non-holomorphic part M^- satisfies

$$M^{-}(\tau) = 2^{1-k} i \int_{-\overline{\tau}}^{i\infty} \frac{\rho^{c}(w)}{(-i(w+\tau))^{2-k}} dw,$$

where $\rho^{c}(\tau) := \overline{\rho(-\overline{\tau})} = \sum_{n=1}^{\infty} \overline{c_{\rho}(n)} q^{n}$.

Proof (lemma, sketch). By definition, for $n \in \mathbb{N}$,

(1)
$$i(2\pi n)^{1-k}\Gamma(k-1,4\pi ny)q^{-n} = \int_{2iy}^{i\infty} \frac{e(n(w-\tau))}{(-iw)^{2-k}} dw = \int_{-\overline{\tau}}^{i\infty} \frac{e(nw)}{(-i(w+\tau))^{2-k}} dw.$$

Applying (1),

$$2^{1-k}i \int_{-\overline{\tau}}^{i\infty} \frac{\sum_{n=1}^{\infty} \overline{c_{\rho}(n)} e(nw)}{(-i(w+\tau))^{2-k}} dw = 2^{1-k}i \sum_{n=1}^{\infty} \overline{c_{\rho}(n)} \int_{-\overline{\tau}}^{i\infty} \frac{e(nw)}{(-i(w+\tau))^{2-k}} dw$$
$$= -2^{1-k} \sum_{n=1}^{\infty} \overline{c_{\rho}(n)} (2\pi n)^{1-k} \Gamma(k-1, 4\pi ny) q^{-n}.$$

Since (by def. of the shadow) we must have

$$c_{\rho}(n) = -(4\pi)^{k-1}\overline{c_M(-n)}n^{k-1},$$

the above becomes

$$\sum_{n=1}^{\infty} c_M^-(-n) \Gamma(k-1, 4\pi n y) q^{-n} = \sum_{n<0} c_M^-(n) \Gamma(k-1, 4\pi |n|y) q^n = M^-(\tau).$$

Zwegers' Appell-Lerch sums:

Definition. For $\tau \in \mathbb{H}$ and $z_1, z_2 \in \mathbb{C} \setminus (\mathbb{Z}\tau + \mathbb{Z})$, define **Zwegers'** μ -function by

$$\mu(z_1, z_2; \tau) := \frac{\zeta_1^{\frac{1}{2}}}{\vartheta(z_2; \tau)} \sum_{n \in \mathbb{Z}} \frac{(-1)^n \zeta_2^n q^{\frac{n(n+1)}{2}}}{1 - \zeta_1 q^n},$$

where $\zeta_j := e^{2\pi i z_j}$ (j = 1, 2) and the Jacobi theta function is

$$\vartheta\left(z;\tau\right) := \sum_{n \in \frac{1}{2} + \mathbb{Z}} e^{\pi i n^{2} \tau + 2\pi i n \left(z + \frac{1}{2}\right)} = -iq^{\frac{1}{8}} \zeta^{-\frac{1}{2}} \prod_{n=1}^{\infty} \left(1 - q^{n}\right) \left(1 - \zeta q^{n-1}\right) \left(1 - \zeta^{-1} q^{n}\right).$$

(Here (and elsewhere when relevant) $\zeta = e^{2\pi i z}$.) Note. When convenient, we may write functions $a(z; \tau) = a(z)$. **Remark.** ϑ is an odd (in z) holomorphic Jacobi form (on $\mathbb{C} \times \mathbb{H}$) of weight and index 1/2, e.g.:

$$\begin{aligned} \vartheta(z+1) &= -\vartheta(z), \qquad \qquad \vartheta(z+\tau) = -e^{-\pi i \tau - 2\pi i z} \vartheta(z), \\ \vartheta(z;\tau+1) &= e^{\frac{\pi i}{4}} \vartheta(z;\tau), \quad \vartheta\left(\frac{z}{\tau}; -\frac{1}{\tau}\right) = -i \sqrt{-i\tau} e^{\frac{\pi i z^2}{\tau}} \vartheta(z;\tau). \end{aligned}$$

Remark. The function $z_1 \mapsto \mu(z_1, z_2; \tau)$ is meromorphic with simple poles in $\mathbb{Z}\tau + \mathbb{Z}$, with residue $-\frac{1}{2\pi i} \frac{1}{\vartheta(z_2)}$ at $z_1 = 0$.

The function μ exhibits "mock" Jacobi behavior on $\mathbb{C} \times \mathbb{H}$. See in particular items ii) in the propositions below.

Proposition. We have:

i)
$$\mu(z_{1}+1, z_{2}) = \mu(z_{1}, z_{2}+1) = -\mu(z_{1}, z_{2}),$$

ii)
$$\mu(z_{1}+\tau, z_{2}; \tau) = -\zeta_{1}\zeta_{2}^{-1}q^{\frac{1}{2}}\mu(z_{1}, z_{2}; \tau) - \underbrace{i\zeta_{1}^{\frac{1}{2}}\zeta_{2}^{-\frac{1}{2}}q^{\frac{3}{8}}}_{elliptic Jacobi error},$$

iii)
$$\mu(z_{1}+\tau, z_{2}+\tau) = \mu(z_{1}, z_{2}),$$

iv)
$$\mu(-z_{1}, -z_{2}) = \mu(z_{1}, z_{2}).$$

i)
$$\mu(z_1, z_2; \tau + 1) = e^{-\frac{\pi i}{4}} \mu(z_1, z_2; \tau).$$

ii)
$$\mu\left(\frac{z_1}{\tau}, \frac{z_2}{\tau}; -\frac{1}{\tau}\right) = -\sqrt{-i\tau} e^{-\frac{\pi i}{\tau}(z_1 - z_2)^2} \mu(z_1, z_2; \tau) - \underbrace{\frac{i\sqrt{-i\tau}}{2} e^{-\frac{\pi i}{\tau}(z_1 - z_2)^2} h(z_1 - z_2; \tau)}_{modular Jacobi error} \right)$$

where the Mordell integeral is

$$h(z;\tau) := \int_{\mathbb{R}} \frac{e^{\pi i \tau t^2 - 2\pi z t}}{\cosh(\pi t)} dt.$$

Remark. The Mordell integral is the unique holomorphic function $z \mapsto h(z; \tau)$ satisfying

i)
$$h(z+1) = -h(z) + \frac{2}{\sqrt{-i\tau}} e^{\frac{\pi i}{\tau} \left(z+\frac{1}{2}\right)^2}$$

ii) $h(z+\tau) = -\zeta q^{\frac{1}{2}} h(z) + 2\zeta^{\frac{1}{2}} q^{\frac{3}{8}}.$

This is left as an Exercise.

Proof of ii) (sketch). Define

$$f(z_1, z_2; \tau) := \frac{2i}{\sqrt{i\tau}} e^{\frac{\pi i}{\tau}(z_1 - z_2)^2} \mu\left(\frac{z_1}{\tau}, \frac{z_2}{\tau}; -\frac{1}{\tau}\right) + 2i\mu(z_1, z_2; \tau).$$

One can show that f depends only on $z_1 - z_2$. It can be shown that f satisfies h's props. i) and ii). The result follows by uniqueness of h.

Definition. For $z_1, z_2 \in \mathbb{C}$ and $\tau \in \mathbb{H}$, we define the **completed** μ -function

$$\widehat{\mu}(z_1, z_2; \tau) := \mu(z_1, z_2; \tau) + \frac{i}{2} \mathcal{R}(z_1 - z_2; \tau),$$

where $\tau = x + iy$, z = u + iv, and

(2)
$$\mathcal{R}(z;\tau) = \mathcal{R}(z) := \sum_{n \in \frac{1}{2} + \mathbb{Z}} \left(\operatorname{sgn}(n) - E\left(\left(n + \frac{v}{y}\right)\sqrt{2y}\right) \right) (-1)^{n - \frac{1}{2}} \zeta^{-n} q^{-\frac{n^2}{2}}.$$

Here $E(z) := 2 \int_0^z e^{-\pi t^2} dt$ and $\operatorname{sgn}(x) := \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0. \end{cases}$

Remark. For $x \in \mathbb{R}$, $E(x) = \operatorname{sgn}(x) (1 - \beta(x^2))$, where for $y \in \mathbb{R}^+ \beta(y) := \int_y^\infty t^{-\frac{1}{2}} e^{-\pi t} dt$. Further, $\beta(u) = \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}, \pi u\right)$.

This hints at:

Theorem. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{Q}$ such that $(\alpha_1, \beta_1), (\alpha_2, \beta_2) \notin \mathbb{Z}^2$. Then $\tau \mapsto e^{-\pi i (\alpha_1 - \alpha_2)^2 \tau} \widehat{\mu} (\alpha_1 \tau + \beta_1, \alpha_2 \tau + \beta_2; \tau)$

is a harmonic Maass form (for some congruence subgroup) of weight 1/2. Moreover, we have that the shadow of its holomorphic part is

$$i\sqrt{2}e^{-2\pi i(\alpha_1-\alpha_2)(\beta_1-\beta_2+\frac{1}{2})}g_{\alpha_1-\alpha_2+\frac{1}{2},\beta_1-\beta_2+\frac{1}{2}}(\tau),$$

where the weight 3/2 modular theta functions are defined by

$$g_{a,b}(\tau) := \sum_{n \in a + \mathbb{Z}} n e^{2\pi i n b} q^{\frac{n^2}{2}}.$$

Example. Ramanujan's mock theta functions f(q) and $\omega(q)$ satisfy

$$f(q) = 4q^{-\frac{1}{8}}\mu(2\tau + \frac{1}{2}, \tau; 3\tau) + q^{\frac{1}{24}}\frac{\eta^4(3\tau)}{\eta(\tau)\eta^2(6\tau)},$$

$$\omega(q) = -2iq^{-\frac{3}{4}}\mu(3\tau, 2\tau; 6\tau) + q^{-\frac{2}{3}}\frac{\eta^4(6\tau)}{\eta(2\tau)\eta^2(3\tau)},$$

The other mock theta functions may similarly be expressed in terms of μ and modular forms.

Zwegers more generally shows that $\mu(u, v; \tau)$ (which may be viewed as functions of $(u - v, \tau)$) behave like mock Jacobi forms.

Theorem. We have

i) For $k, \ell, m, n \in \mathbb{Z}$,

$$\widehat{\mu}(z_1 + k\tau + \ell, z_2 + m\tau + n) = (-1)^{k+\ell+m+n} q^{\frac{1}{2}(k-m)^2} \zeta_1^{k-m} \zeta_2^{m-k} \widehat{\mu}(z_1, z_2).$$
ii) If ν_η is the multiplier of η , then for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}),$

$$\boxed{\widehat{\mu}\left(\frac{z_1}{c\tau+d}, \frac{z_2}{c\tau+d}; \frac{a\tau+b}{c\tau+d}\right) = \nu_{\eta}(\gamma)^{-3}(c\tau+d)^{\frac{1}{2}}e^{-\frac{\pi i c}{c\tau+d}(z_1-z_2)^2}\widehat{\mu}(z_1, z_2; \tau)}.$$

Modern vs. Historic Definitions of Mock Theta Functions

Recall

Ramanujan's observations:

- The modular forms $\pm b(q)$ (where $b(q) := q^{\frac{1}{24}} \eta^3(\tau) / \eta^2(2\tau)$), together with the 0 function, appear to "cut out" the exponential singularities of f(q).
- That is, as q approaches any even order 2k root of unity singularity of f(q), then

$$f(q) - (-1)^k b(q) \stackrel{?}{=} O(1)$$

• That is, asymptotically, towards singularities,

mock theta
$$\pm$$
 modular form $\stackrel{?}{=}$ bounded

Recall, we attribute the following to Ramanujan:

Definition (Ramanujan). A mock theta function F of the complex variable q, defined by an Eulerian (q-hypergeometric) series which converges for |q| < 1, satisfies

- (1) infinitely many roots of unity are exponential singularities,
- (2) for every root of unity ζ there is a modular form $\vartheta_{\zeta}(q)$ such that the difference $F(q) q^c \vartheta_{\zeta}(q)$ is bounded as $q \to \zeta$ radially,
- (3) there does not exist a single modular form $\vartheta(q)$ such that $F(q) q^c \vartheta(q)$ is bounded as q approaches any root of unity radially.

"...[no one has] proved that any of Ramanujan's mock theta functions are really mock theta functions according to his definition." -B.C. Berndt, 2013

Proof (F-Ono-Rhoades Radial Limit Theorem, sketch).

Definition. The $_2\psi_2$ bilateral q-hypergeometric series is

$${}_{2}\psi_{2}\left(\begin{array}{ccc}a_{1}&a_{2}\\b_{1}&b_{2}\end{array} q, z\right) := \sum_{n=-\infty}^{\infty}\frac{(a_{1};q)_{n}(a_{2};q)_{n}}{(b_{1};q)_{n}(b_{2};q)_{n}}z^{n},$$

 $(a;q)_{-m} := \prod_{j=1}^{m} (1 - aq^{-j})^{-1}, \ m \in \mathbb{N}.$ We have that

$${}_{2}\psi_{2}\left(\begin{array}{c}a_{1} \ a_{2}\\b_{1} \ b_{2}q,z\end{array}\right) = \frac{\left(\frac{b_{2}q}{a_{1}a_{2}z};q\right)_{\infty}\left(\frac{b_{1}}{a_{2}};q\right)_{\infty}(a_{1}z;q)_{\infty}\left(\frac{b_{2}}{a_{1}};q\right)_{\infty}}{\left(\frac{q}{a_{2}};q\right)_{\infty}\left(\frac{b_{1}b_{2}}{a_{1}a_{2}z};q\right)_{\infty}(b_{2};q)_{\infty}(z;q)_{\infty}} \cdot {}_{2}\psi_{2}\left(\begin{array}{c}\frac{a_{1}a_{2}z}{b_{2}} \ a_{1}\\a_{1}z \ b_{1}\end{array}\right)$$

A (limiting Bailey) $_2\psi_2$ transformation eventually leads to:

Proposition (Ramanujan, reinterpreted by Y.S. Choi). Let $q = e^{2\pi i \tau}$, $\alpha = e^{2\pi i u}$, $\beta = e^{2\pi i v}$. We have that

$$\sum_{n=0}^{\infty} \frac{(\alpha\beta)^n q^{n^2}}{(\alpha q;q)_n (\beta q;q)_n} + \sum_{n=1}^{\infty} q^n (\alpha^{-1};q)_n (\beta^{-1};q)_n = iq^{\frac{1}{8}} (1-\alpha) (\beta\alpha^{-1})^{\frac{1}{2}} (\boldsymbol{q}\boldsymbol{\alpha}^{-1};\boldsymbol{q})_{\infty} (\beta^{-1};\boldsymbol{q})_{\infty} \boldsymbol{\mu}(\boldsymbol{u},\boldsymbol{v};\boldsymbol{\tau}).$$

The $_2\psi_2$ identity implies

$$R\left(\zeta_b^a;q\right) = m(a,b;\tau)\mu\left(-\frac{a}{b},\frac{a}{b};\tau\right) - (1-\zeta_b^a)(1-\zeta_b^{-a})U(\zeta_b^a;q)$$

where $m(a,b;\tau) := iq^{\frac{1}{8}}(1-\zeta_b^{-a})\zeta_b^a(\zeta_b^aq;q)_{\infty}(\zeta_b^{-a};q)_{\infty}.$

Using the modular or mock modular transformation properties of m, the Appell-Lerch series μ , and the crank C:

Proposition (F-Ono-Rhoades). For $z \in \mathbb{R}^+$, as $z \to 0^+$, we have that

$$\begin{split} m\Big(a,b;\frac{1}{k}\left(h+iz\right)\Big)\mu\Big(-\frac{a}{b},\frac{a}{b};\frac{1}{k}\left(h+iz\right)\Big) \\ &= \left(\frac{i}{z}\right)^{\frac{1}{2}}(\psi(\gamma))^{-1}q^{\frac{1}{24}}q_{1}^{-\frac{1}{24}}(-1)^{ab'}\zeta_{2b}^{ah'-a}\boldsymbol{\zeta_{2b^{2}}^{-3a^{2}kh'}}\frac{\zeta_{b}^{a}-1}{1-\zeta_{b}^{ah'}}(1+O(q_{1}^{\alpha})). \end{split}$$

Proposition (F-Ono-Rhoades). For $z \in \mathbb{R}^+$, as $z \to 0^+$, we have that

$$C\left(\zeta_{b}^{a};\frac{1}{k}(h+iz)\right) = \left(\frac{i}{z}\right)^{\frac{1}{2}}(\psi(\gamma))^{-1}q^{\frac{1}{24}}q_{1}^{-\frac{1}{24}}(-1)^{ab'}\zeta_{2b}^{ah'-a}\zeta_{2b^{2}}^{-a^{2}kh'}\frac{\zeta_{b}^{a}-1}{1-\zeta_{b}^{ah'}}(1+O(q_{1}^{\beta}).$$

In the above propositions, $q = e^{(2\pi i/k)(h+iz)}$, $q_1 = e^{(2\pi i/k)(h'+i/z)}$, and $hh' \equiv -1 \pmod{k}$.

• Griffin-Ono-Rolen later generalized this (less explicitly) and show that Ramanujan's mock theta functions, and mock modular forms, satisfy his definition. In particular,

Theorem (G-O-R). Suppose that $F = F^+ + F^-$ is a HMF of weight $k \in \frac{1}{2}\mathbb{Z}$ on $\Gamma_1(N)$, where F^- (resp. F^+) is the NHP (resp. HP) of F. If F^- is nonzero and g is any weight k weakly hol. modular form on any $\Gamma_1(N')$, then $F^+ - g$ has exponential singularities as qapproaches infinitely many roots of unity ζ .

Note. HMFs here have principal parts at all cusps.

• Rhoades shows that the modern definition of a mock theta function (roughly: the hol. part of a HMF of weight 1/2 with modular theta function shadow) is not equivalent to Ramanujan's, by constructing two q-series such that either one of them satisfies the modern def. (but not historic) or the other satisfies the historic def. (but not modern).

• However, by the above (Zwegers, FOR, GOR) Ramanujan's mock theta functions satisfy both definitions.

Hardy-Ramanujan-Rademacher-type coefficient formulas:

1952: Dragonette's thesis (under Rademacher) proves Ramanujan's (claimed) asymptotic for the coefficients $\alpha_f(n) (= p_e(n) - p_o(n))$:

<u>Claim</u> (Ramanujan). As $n \to \infty$

$$\alpha_f(n) = (-1)^{n+1} \frac{\sqrt{6} \exp\left(\frac{\pi}{12}\sqrt{24n-1}\right)}{\sqrt{24n-1}} + O\left(\frac{\exp\left(\frac{\pi}{24}\sqrt{24n-1}\right)}{\sqrt{24n-1}}\right).$$

1964: Andrews' thesis (under Rademacher) improves this: for all $\varepsilon > 0$,

$$\alpha_f(n) = \frac{\pi}{(24n-1)^{\frac{1}{4}}} \sum_{k=1}^{\lfloor\sqrt{n}\rfloor} \frac{(-1)^{\lfloor\frac{k+1}{2}\rfloor} A_{2k}\left(n - \frac{k(1+(-1)^k)}{4}\right)}{k} I_{\frac{1}{2}}\left(\frac{\pi\sqrt{24n-1}}{12k}\right) + O\left(n^{\varepsilon}\right)$$

Here, for $k, n \in \mathbb{N}$, the Kloosterman sum $A_k(n)$ is

$$A_k(n) := \frac{1}{2} \sqrt{\frac{k}{12}} \sum_{\substack{d \pmod{24k} \\ d^2 \equiv -24n+1 \pmod{24k}}} \left(\frac{12}{d}\right) \exp\left(\frac{\pi i d}{6k}\right),$$

and is in terms of the *I*-Bessel function. $(J_{\alpha}(x) \text{ satisfies } x^2 \frac{d^2}{dx^2}J + x \frac{d}{dx}J + (x^2 - \alpha^2)J = 0;$ and $I_{\alpha}(x) = i^{-\alpha}J_{\alpha}(ix)$. Explicitly, $I_{\alpha}(x) = \sum_{m=0}^{\infty} \frac{(x/2)^{2m+\alpha}}{m!\Gamma(m+\alpha+1)};$ principal branch (from PV of $(x/2)^{\alpha}$) is analytic in $\mathbb{C} \setminus (-\infty, 0]$. As $k \to \infty$, fixed *n*, the above IBF $\searrow 0$.)

Recall also the earlier, similar, celebrated Hardy-Ramanujan-Rademacher exact formula

$$p(n) = 2\pi (24n-1)^{-\frac{3}{4}} \sum_{k=1}^{\infty} \frac{A_k(n)}{k} I_{\frac{3}{2}} \left(\frac{\pi\sqrt{24n-1}}{6k}\right)$$

Conjecture (Andrews and Dragonette). If $n \in \mathbb{N}$, then

$$\alpha_f(n) = \frac{\pi}{(24n-1)^{\frac{1}{4}}} \sum_{k=1}^{\infty} \frac{(-1)^{\left\lfloor \frac{k+1}{2} \right\rfloor} A_{2k} \left(n - \frac{k\left(1 + (-1)^k\right)}{4}\right)}{k} I_{\frac{1}{2}} \left(\frac{\pi\sqrt{24n-1}}{12k}\right).$$

Theorem (Bringmann-Ono). The Andrews-Dragonette Conjecture is true.

Proof (Andrews-Dragonette Conjecture, sketch). By the above work of Zwegers, $q^{-\frac{1}{24}}f(q)$ is a (vector-valued) mock modular form (hol. part of a v-v HMF). On the other hand, there is a Maass Poincaré series which transforms in exactly the same way and has the same principal parts at cusps, hence their difference is a holomorphic form (of weight 1/2), which is shown to identically equal 0. The exact formula for the coefficients $\alpha_f(n)$ then comes from the Maass-Poincaré series. That is, let

$$\varphi_{s,k}(\tau) := \left(\frac{6}{\pi y}\right)^{\frac{k}{2}} M_{-\frac{k}{2},s-\frac{1}{2}}\left(\frac{\pi y}{6}\right) e\left(-\frac{x}{24}\right),$$
11

where M = M-Whittaker function. (Note. $M_{\kappa,\mu}(x)$ solves $\frac{d^2}{dx^2}M + (-\frac{1}{4} + \frac{\kappa}{x} + \frac{\frac{1}{4} - \mu^2}{x^2})M = 0.$) For matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(2)$ with $c \in \mathbb{N}_0$,

$$\chi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) := \begin{cases} e\left(-\frac{b}{24}\right) & \text{if } c = 0, \\ i^{-\frac{1}{2}}(-1)^{\frac{1}{2}(c+ad+1)}e\left(-\frac{a+d}{24c} - \frac{a}{4} + \frac{3dc}{8}\right)\omega_{-d,c}^{-1} & \text{if } c > 0. \end{cases}$$

Here $\omega_{a,b} := e\left(\frac{1}{2}s(a,b)\right)$, where the Dedekind sum

$$s(a,b) := \sum_{\mu \pmod{b}} \left(\left(\frac{\mu}{b} \right) \right) \left(\left(\frac{a\mu}{b} \right) \right),$$

with $((x)) := \begin{cases} x - \lfloor x \rfloor - \frac{1}{2} & \text{if } x \in \mathbb{R} \setminus \mathbb{Z}, \\ 0 & \text{if } x \in \mathbb{Z}. \end{cases}$ Define the Maass Poincaré series $P_k(s; \tau)$ by

$$P_k(s;\tau) := \frac{2}{\sqrt{\pi}} \sum_{M \in \Gamma_\infty \setminus \Gamma_0(2)} \chi(M)^{-1} (c\tau + d)^{-k} \varphi_{s,k}(M\tau)$$

One can show: $P_k(1 - k/2; \tau)$ is absolutely convergent for k < 1/2 and annihilated by Δ_k .

The function $P_{\frac{1}{2}}(s;\tau)$ can be analytically continued by its Fourier expansion to s = 3/4. (This requires an interpretation of $A_{2k}(n)$ as sums of quadratic forms of fixed discriminant, and extends an argument of Hooley (in B-O's 2006 paper) on the equidistribution of CM points.)

One checks that $P_{\frac{1}{2}}(\frac{3}{4};\tau)$ has the same principal parts at cusps and the same modular transformation properties as $q^{-1/24}f(q)$. The proof continues as outlined.