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Reference. K. Bringmann, A. Folsom, K. Ono, L. Rolen, Harmonic Maass Forms and Mock
Modular Forms: Theory and Applications, AMS Colloquium Publications, 64. American
Mathematical Society, Providence, RI, 2018. 391pp.

(and references therein).

Review or introduce as needed p1-3: Recall Ramanujan’s mock 9-function (1920)

Ha) = z; (—¢:9)2

Major Question: (Dyson’s challenge) how do the mock theta functions fit into the theory
of modular forms?

Recall
Theorem (Watson, 1936). We have that

1 2 3a SlIlh at?
q f(Q)_Q\/ q1 ) R Vi / e 5 dt,
smh

where q := e~ *, 3 :=72/a, q = e " (Re(a), Re(B) >
Zwegers (2001) defines the period 1ntegeral:

gz
G =23 | ——=eests

where
o0

g(1) = — Z (n+ %)q%(’”%)Q = _%(qi — Bgbt 4 Tget — - )

is a weight 3/2 modular theta function.

!Disclaimer. These are unpublished lecture notes of the author, rough in nature, with some abuse of nota-
tion, and which may contain typographical errors.
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Remark. The integral converges (even for 7 € Q) since g is a cusp form (i.e. g(7) = O(g21)).
With F(r) = ¢ f(q),
A major theorem:
Theorem (Zwegers, 2001). The difference
H(t):=F(r) — G(1)

transforms as a (component of a) weight 1/2 non-holomorphic (vector-valued) modular form.
In particular, with H (1) := (H(7), H1(T), Hy(7)) (and Hy, Hy defined similar to f, using w)
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Hr+1)=| 0 0 ¢ |H(r), HE)=vV—-ir[ 1 0 0 |H(m).
0 ¢ 0 00 —1

Idea: Zwegers “corrects” Watson’s transformation for F' by constructing the (non-holomorphic)
function G' with the same exact error to modularity (“error integral”), and subtracting.

One gains modularity at the expense of losing holomorphicity.

o) 2

L q" 100
H(T) = g Z—Q _ 22\/_/
N =0 (—¢:9)7 v —i( 7'—|-Z
xnon-holomorphic ~ 4
v'transforms like a modular form (no error) +holomorphic Xnon- holomorphlc

Xerror term in modular transformation Xerror term in modular transformation

The modular decomposition F' — G was reminiscent of

Definition (Bruinier-Funke, 2004). A harmonic Maass form of weight k € 1Z on T := [x(N)
(where 4 | N if k € 37 — Z) is a smooth M : H — C satisfying

(1) transformation law: VA = (¢8%) e T, 7 € H,

M) = (§)2k552k (CT—f-d)kM(T), ke %Z—Z, (Ed _ {1’ d=1 (mod 4)7)
(e +d)EM(7), keZ, i, d=3 (mod 4),
(2) harmonic: AyM =0, where Ay ==y (88—; + 68—;2) + iky <% + i(%)

weight k Laplacian operator

(1 =z +1y)

(3) M satisfies a suitable growth condition in the cusps. ILe., at 00,3 a polynomial
Py(7) € Clg™ ] such that

M(7) = pu(7) = O(e™)

as y — oo for some € > 0.



Lemma. Let M be a HMF of weight k € $Z\{1} w.r.t. To(N). Then M has the Fourier
expansion (at oo):

M(r)= > ch(n)g"+> ey (M1 -k, —4mny)q".

(Similar expansions hold at other cusps.)

Here, the incomplete Gamma function is
> dt
[(s,2) ::/ e —,
P t
(R(s) >0,z € C; or s € C, z € H; analytically continued in s via a functional equation).

Proof (lemma, sketch). Condition (1) =
M(r) =: Z ay(n,y)e(nx).
nez

Applying A (and using cond. (2)), we find that the Fourier coefficients C'(2mny) := ax(n, y)
satisfy the differential equation

Ow? w \ow
For n # 0 there are two linearly independent solutions: e™™ and I'(1 — k, —2w)e™"*. The

restrictions in summation in the lemma follow from I['(s,z) ~ x*7le™® as |z| — oo and

cond. (3). O
Definition. We call

9 otw) = cw) + £ ( 9 ) +C(w)> _0.

M*(r) = cly(n)g"
n>>>—oo
the holomorphic part of the wt. kK HMF M, and

M~(7) = Zc&(n)l“(l — k, —4mny)q"

n<0
the non-holomorphic part of the wt. K HMF M.

Example. The (normalized) mock theta function ¢! f(¢?*) is the holomorphic part of the
HMF

F(247) — G(2471)
of weight 1/2 on I'g(144) (and char. 1o := (12)).

Attributed to Zwegers,

Theorem (Zwegers). Ramanujan’s mock theta functions are* hol. parts of weight 1/2 HMFs.
*That is, if m is one of Ramanugjan’s mif’s, then for some a € Q and ¢ € C,

m(r) = ¢*"M (1) + ¢,
where M™ is the holomorphic part of a weight 1/2 HMF.
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Following Zagier,

Definition. A mock modular form of weight k is the holomorphc part M* of a HMF of
weight £ for which M~ is nontrivial.

Other examples of HMFs:

e Weakly hol. modular forms (which are not called mock modular as NHP is trivial)

3
e Non-holomorphic weight 2 Eisenstein series: E5(7) := Es(7) - —
~—— Y
1—24 Z o1(n)q"
n=1
“of manageable growth,” ie., (F3)~ := =3/(mwy), [&(E5) = 3/m, where &, will be

defined below].

e Zagier’s weight 3/2 Hurwitz class number function:

1 > j— 1 ) 1
= N U —=. 4m?y ) g™
H(T) 12+Z @ q +4ﬁ;n ( 5 4mn y)q +87T\/§,

(weighted) number of classes
of + BQF disc —n

“of manageable growth.” [Le., &32(H) = —0/(16m7).]

e Maass-Poincaré series

e from Dyson’s ranks more generally:
Theorem (Bringmann-Ono, 2010). If0 < a < ¢, then
isin (22) 62 [ O (% 0.u)
V3 7 /U7 +u)

is a harmonic Maass form of weight % onT,.

_Le a. 4.
q = R(¢5q)
—

partition rank generating function

du

e others (see also Exercises) ...

We can directly relate to spaces of ordinary modular forms via the weight £k xi-operator:

0
= 2y —.
&k W o
Theorem. We have that

Lokt Ha—i(T'o(N)) = Si(I'o(N)).
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Moreover, for a weight 2 — k harmonic Maass form M of level N we have that

ok (M(7)) = &k (M (7)) = —(4m)*~ 1ZCM k1,

(Recall, M~ (1) = >, o car(n)I'(1 = k, —4mny)q".)
Remark. One can show that ker (§_x) = M _,(To(N))
—— —

weakly hol. modular forms (poles in cusps)

Proof (Theorem, sketch). We have

0 0
I - M+ M~
oT 8?( - )
5 )

- @M (since EM =0)

= 0 ( cy(m)T(k =1, —4mny)q")

= — " 1, -

or n<0

=Y cyn) nﬁf(k — 1, —4mny)) (since ﬁ "= 0)

e T or ’ Y 50" =

== 2_ cu(n)q(=dmn);(—dmny)*-2etmy, - (since aﬁ - %(ax +i0,)),

n<0
using that
ir(@ U)) — wa—le—w
ow
Thus,
o kM = —2iy2_k ZCM 47r)k 1yk 2 4ﬂ'nyq
n<0
() S e
n<0
= —(47r)k_1 Z C]T/[(—n)nk_lq”,
n>0

as wanted. The modular transformation property follows from that of M and calculus, and
is left as an Exercise. U

Definition. The cusp form associated to the weight 2 — k HMF M
&2 k(M(7)) = & p(M~ (7)) = —=(4m)* 1 Y " ey (—n)n*'q" € Sp(To(N))
n=1

is called the shadow of the mock modular form M.
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Example. The shadow of the (normalized) third order mock theta function ¢=!f(¢*) is
(up to constant multiple) the weight 3/2 theta function g(247) := — Zzozfoo(n—l—%)q%("*%)?
More generally,

Lemma. Let M be a weight 2 — k HMF. Suppose the mock modular form M™ has shadow
p(1) =32 ¢,(n)q™ € Sk(To(N)). Then the non-holomorphic part M~ satisfies

M) =2t o)

i+ )

100
dw,

n

where p(7) == p(=T) = 352, cp(n)q".
Proof (lemma, sketch). By definition, for n € N,

‘ T W Y " e(n(w — 7)) w — > e(nw) w
(1)  i(2mn) "I'(k — 1,4mny)q /%y —(—iw)%k d /_T Citw —1—7-))2*’“0[ )
Applying (1)),

1—k - 1 Z%W@(nw) w — 21k - c(n 1 e(nw) w
2o [ =2 |

n=1
= —2'"% "¢ (n)(2mn) T (k — 1, 4mny)q "
n=1
Since (by def. of the shadow) we must have
cp(n) = —(4m)* Ly (=),

the above becomes

Z cy(—n)I'(k — 1,4mny)qg " = Zc&(n)T(k — 1, 4w|nly)q" = M~ (7).

n<0

Zwegers’ Appell-Lerch sums:
Definition. For 7 € H and 2y, 2o € C\(Z7 + Z), define Zwegers’ u-function by

1 n(n+1)
¢ (=1)"¢3q >
0 (zi7) 2 1= Gy
where (; := €™ (j = 1,2) and the Jacobi theta function is

D(zr) =y emmmmnla) o igi e [T - (1-¢e" ) (1= ¢
n=1

nes+7

w21, 22;7) :=

(Here (and elsewhere when relevant) ¢ = ™))

Note. When convenient, we may write functions a(z;7) = a(z).
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Remark.? is an odd (in z) holomorphic Jacobi form (on CxH) of weight and index 1/2,e.g.:

V(z+1) = —9d(2), I(z+7) = —e T (),
s’ 1 miz?
Hz;m+1)=ead(z;71), 0 <£, ——) = —iv/—ite T W(z; 7).
T T
Remark. The function z; — g (21, 29; 7) is meromorphic with simple poles in Z7 + Z, with
residue — 2m 19(22) at z1 = 0.

The function p exhibits “mock” Jacobi behavior on C x H.
See in particular items ii) in the propositions below.

Proposition. We have:

D) plzr+1,29) = plz1, 2 + 1) = —p(21, 22),

.. 1 L 13
i) |z +7,207) = =G g2z, 20 7) —  0GEG g,
——

elliptic Jacobi error

i) p(zr + 7,20 +7) = (21, 22),
iv) p(—21, —2) = p(21, 22).

Proposition. We have

i) gz, 207+ 1) = e T (21,205 7).

1 mi » —1 s s
i) | (ﬁ’ 2, __> = —Vire RO (o, ) — e RO (2 — ayi7)

(. S

vV
modular Jacobi error

where the Mordell integeral is
6m’7t2727rzt
h(z;1):= | ———dt.
(z:7) /R cosh(mt)
Remark. The Mordell integral is the unique holomorphic function z +— h(z; 7) satisfying
i) h(z+1) = —h(z >+Fer<z+ ),
ii) A(z +7) = —Cq2h(z) +2(2g5.
This is left as an Exercise.

Proof of ii) (sketch). Define

21 @ 2 21z 1
. . (z1—22) s 2 .
f(2172277-) . \/Ee M(Ta 7_7 7_) + 7/,“(2172277_)

One can show that f depends only on z; — 2. It can be shown that f satisfies h’s props. i)
and ii). The result follows by uniqueness of h. O

Definition. For z;, 2o € C and 7 € H, we define the completed p-function

~ 7
f(z1,22;7) = p (21, 22, 7) + §R (21 — 22;7),
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where 7 = x + 1y, z = u + v, and

® R =RE= Y (s -2 (0 L) var) ) i T

nes+7 4
-1, =<0,
Here E(z) :=2 foz e~ dt and sgn(z):=40, x=0,
1, z > 0.

Remark. For z € R, F(z) = sgn(z) (1 — 3 (2?)), where for y € R* S(y) := fyoo t~2e L.
Further, f(u) = \/%?F (3, 7mu).
This hints at:
Theorem. Let ay,an, 31, B2 € Q such that (ay, 1), (o, B2) & Z*. Then
T = e_”(o“_o‘Q)QTﬁ (1T + B1, a7 + Po; T)

is a harmonic Maass form (for some congruence subgroup) of weight 1/2. Moreover, we have
that the shadow of its holomorphic part is

Z‘\/§e—2ﬁi(a1—a2)(ﬂ1—ﬁ2+%)

where the weight 3/2 modular theta functions are defined by

2
Gap(T) = D ne*mmhq

nea+7Z

gal—az-i-%,,ﬁﬁ—ﬁz-i-% (7)’

Example. Ramanujan’s mock theta functions f(¢) and w(q) satisfy

_1 1 + 7'(37)
Hla) =4q 5 p(27 + 5, 7337) + ¢2 TG
4
. _3 2 n(67)
w(q) = —2iq +p(37,27;67) + ¢ 3 —————"——.
@ ( ) n(27)n*(37)

The other mock theta functions may similarly be expressed in terms of u and modular forms.

Zwegers more generally shows that p(u, v;7) (which may be viewed as functions of (u—v, 7))
behave like mock Jacobi forms.

Theorem. We have
i) For k,{,m,n € Z,
f(z1+ kT + 4,22+ m7 +n) = (_1)k+g+m+nq%(k_m)2 TG (2, 22).

i) If v, is the multiplier of 1, then for all v = (¢ %) € SLy(Z),

A( 2 29 at+b

. _ -3 1 _Lic(zl_z2)2/\ )
— d2 ct+d .
: cr+d’cr+d’cr+d) va) 7 er + d)ze Az, 22,7)

Modern vs. Historic Definitions of Mock Theta Functions
Recall

Ramanujan’s observations:



e The modular forms +b(q) (where b(q) := q21%(7) /n(27)), together with the 0 func-
tion, appear to“cut out” the exponential singularities of f(q).

e That is, as ¢ approaches any even order 2k root of unity singularity of f(q), then

(q) — (=1)*b(q)=0(1)

e That is, asymptotically, towards singularities,

mock theta 4+ modular form - bounded

Recall, we attribute the following to Ramanujan:

Definition (Ramanujan). A mock theta function F' of the complex variable ¢, defined
by an Eulerian (g-hypergeometric) series which converges for |g| < 1, satisfies

(1) infinitely many roots of unity are exponential singularities,

(2) for every root of unity ¢ there is a modular form ¥:(¢) such that the difference
F(q) — ¢“Y¢(q) is bounded as ¢ — ¢ radially,

(3) there does not exist a single modular form 9J(¢q) such that F'(q) — ¢°9(q) is bounded
as ¢ approaches any root of unity radially.

“..[no one has] proved that any of Ramanujan’s mock theta functions are really mock theta
functions according to his definition.” -B.C. Berndt, 2013

Proof (F-Ono-Rhoades Radial Limit Theorem, sketch).

Definition. The 51, bilateral q-hypergeometric series is

a; Qo L = (al;Q)n(QQ;Q)n n
2%( br b ¢ Z>'_ Z (bl;Q)n(bQ;q)nz’

n=—oo

m

(@;¢9)-m = [[A=ag™)!, meN
j=1
We have that

s < ar 0z 2) (oL @)oo (5 @)oo (@12 0)o (25 0o s <% TR )
Db ) (s 0o @)oo (b2 @)eo(25 ) mz b T

A (limiting Bailey) 21 transformation eventually leads to:

Proposition (Ramanujan, reinterpreted by Y.S. Choi). Let ¢ = €*™7, a = ¢*™* [ = 2™,
We have that

0o 1 B
nzaq, qu ;q A0 =

iqg5(1—a)(Ba) (g q) _ (B q) p(u, v 7).

9



The 215 identity implies

a a

R(Giia) = mla b (=5, 57) = (1= 61 = G UG )

where m(a, b; 7) := iq® (1 = G )G (GG )0 (G Doc-
Using the modular or mock modular transformation properties of m, the Appell-Lerch series
1, and the crank C:

Proposition (F-Ono-Rhoades). For z € RT, as z — 0%, we have that

m(a,b;%(h—i—iz))u(— %,%;%(h—i—iz))

i % B L*L ab’ ~ah! —a ~—3a2 /Ca_]. a
= (1) ot g G S o)

Proposition (F-Ono-Rhoades). For z € RT, as z — 0%, we have that

1
(G (h+i2)
~ (4) WOyt e s

z

G —1
1=

(1+0(q7).

In the above propositions, g = e@™/R(+iz) g — Cri/k)(W+i/2) "and hh' = —1 (mod k).

e Griffin-Ono-Rolen later generalized this (less explicitly) and show that Ramanujan’s mock
theta functions, and mock modular forms, satisfy his definition. In particular,

Theorem (G-O-R). Suppose that F = F* + F~ is a HMF of weight k € 1Z on T'1(N),
where '~ (resp. F") is the NHP (resp. HP) of F. If F~ is nonzero and g is any weight
k weakly hol. modular form on any T1(N'), then Ft — g has exponential singularities as q
approaches infinitely many roots of unity (.

Note. HMFs here have principal parts at all cusps.

e Rhoades shows that the modern definition of a mock theta function (roughly: the hol. part
of a HMF of weight 1/2 with modular theta function shadow) is not equivalent to Ramanu-
jan’s, by constructing two g-series such that either one of them satisfies the modern def. (but
not historic) or the other satisfies the historic def. (but not modern).

e However, by the above (Zwegers, FOR, GOR) Ramanujan’s mock theta functions satisfy
both definitions.

Hardy-Ramanujan-Rademacher-type coefficient formulas:

1952: Dragonette’s thesis (under Rademacher) proves Ramanujan’s (claimed) asymptotic
for the coefficients af(n) (= pe(n) — po(n)):

10



Claim (Ramanujan). As n — o0

\/éexp (% 24n — 1) Lo exp (2“—4 24n — 1)
V24n — 1 V24n — 1 '

ar(n) = (=1)"*

1964: Andrews’ thesis (under Rademacher) improves this: for all ¢ > 0,
k(1+(-1)%)
) L (o )y
24n — 1
ap(n) = ———— Y L2 o).
(24n — 1)1 k 12k

k=1

Here, for k,n € N, the Kloosterman sum Ag(n) is
1 Jk 12 mid

An) = 3/ 73 > (g)ew (@) ’

d (mod 24k)
d?>=—24n+1 (mod 24k)

and is in terms of the I-Bessel function. (J,(x) satisfies xZCgC—QQJ +aL ]+ (2* - a?)J = 0;
and I, (z) = i~*J,(iz). Explicitly, I,(z) = > -, %; principal branch (from PV of
(x/2)%) is analytic in C\ (—o0,0]. As k — oo, fixed n, the above IBF \,0.)

Recall also the earlier, similar, celebrated Hardy-Ramanujan-Rademacher exact formula

p(n) = 2m(24n — 1)7% Z Akk(;n)fs (7r 22;; — 1> :

2
k=1

Conjecture (Andrews and Dragonette). If n € N, then

o (DU, (n— —’“(“i”k))
@r(n) = 24n—1iz1 k !

D=

12k

()

Theorem (Bringmann-Ono). The Andrews-Dragonette Conjecture is true.

Proof (Andrews-Dragonette Conjecture, sketch). By the above work of Zwegers, gouf (q) is
a (vector-valued) mock modular form (hol. part of a v-v HMF). On the other hand, there is a
Maass Poincaré series which transforms in exactly the same way and has the same principal
parts at cusps, hence their difference is a holomorphic form (of weight 1/2), which is shown
to identically equal 0. The exact formula for the coefficients a¢(n) then comes from the
Maass-Poincaré series. That is, let

untr) = (2) Mg (B)e (-2),

11



1_
where M = M-Whittaker function. (Note. M, ,(x) solves dd—;M +(—3+24+4 —)M =0.)
For matrices (¢ %) € I'g(2) with ¢ € N,

x((alj)-: e(=21) o
e aql): imH(—1)leradtle (_atd _ oy Me)w . ife>0.

Here w,;, := e (1s(a, b)), where the Dedekind sum

o= 3 ((5) ()

© (mod b)
: _Jxz—|z|-1 ifzeR\Z,
mm“@”_{o itz e Z.
Define the Maass Poincaré series Py(s;T) by
2
P.(s;7):=— -1 —k .
(5= 3 XM er +d) Rp(Mr)
MET \I'o(2)

One can show: Py(1 — k/2;7) is absolutely convergent for k < 1/2 and annihilated by Ag.

The function P (s;7) can be analytically continued by its Fourier expansion to s = 3/4.
(This requires an interpretation of Agx(n) as sums of quadratic forms of fixed discriminant,

and extends an argument of Hooley (in B-O’s 2006 paper) on the equidistribution of CM
points.)

One checks that P% (%;7) has the same principal parts at cusps and the same modular

transformation properties as ¢~ /?*f (¢). The proof continues as outlined. 0
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