BUILDING BRIDGES: 6TH EU/US SUMMER SCHOOL & WORKSHOP
ON AUTOMORPHIC FORMS AND RELATED TOPICS (BB6)
CIRM MARSEILLE, SEPTEMBER 2-13, 2024

EXERCISES: MOCK MODULAR FORMS AND QUANTUM MODULAR
FORMS WITH APPLICATIONS

AMANDA FOLSOM! AND HOLLY SWISHER?

These problems® were selected to complement the lectures and give a wide variety of
choice. Please note that there are more problems here than can be completed during the
exercise sessions. You are not expected to attempt every problem or finish the problems
during the available time, but we hope that there are problems here that you find engaging.
In general it is not necessary to work problems in the order presented, although it will be
clear by context that some problems are sequential. Each problem is labeled (with %, xx) to
indicate difficulty level.

1. MODULAR, QUASIMODULAR, AND MOCK MODULAR FORMS

Problem 1. (x) (MDG Exercise 4.3.9) Show that E? = Eg. Deduce that for all n > 0,

o7(n) = +120203 Jas(n —m).

Problem 2. (xx) (MDG Exercise 4.4.5) Prove that A = Ei—B% has integral Fourier coefficients.

1728

Problem 3. (xx) (MDG Exercise 5.4.4) Prove that

(B} — E2)? = (EyBy, — 1) = —qd—q —3q o (mod 7).

[Hint: First show that E? = Fy (mod 7) and Fg =1 (mod 7).]

Problem 4. (xx) (MDG Exercise 5.4.5) Prove that

- = (St T aoa

n=1

where p(n) is the partition counting function. Deduce that for n > 0,
p(Tn+5)=0 (mod 7).
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Problem 5. (xx) (MDG Exercise 5.5.3) Let A(r) =3_ ., t(n)¢". Prove that
t(n) = o11(n) (mod 691).

[Hint: First show that EZ = Ej — 766290148A and Fip =1+ 628?) L on(n)g™]

Problem 6. (x) Define E, = cxE), such that £, = ¢, + > o1 0k—1(n)g". Let a,b be odd integers
with @ > b. Show that the quasimodular form

f=(D"+1)Eyy — (D" + 1)Eups
is prime detecting.
Problem 7. (x) Let S be a set of positive integers, and pg(n) the number of partitions of n with

parts in S.
(a) Show that for |¢| < 1,

1
ZPS q_Hl_qn

n>0 nes

(b) Find sets S for which Ps(q) is modular (when ¢ = ¢2™7).

Certain problems below (e.g. Problem 8, Problem 10) require some of the theory of
g-hypergeometric series [6, 8]. Namely, with (ay,aq,...,a,;q), = H;Zl(aj;q)n, the ¢-
hypergeometric series are defined by

a, ai, ... Qp (a17a27"'7a7‘;Q>n n M 1+s—r_n
r®Ps VR = —1 z
(b ( bl, bg, bs q ) ;(bl,bQ,...,bs,q;q)n(( ) 1 )

where r,s € Ny, |2| < 1,|q| < 1,b; # ¢~™ for any m € Ny. The celebrated Watson-Whipple
transformation is given by

< a, qva, —qy/a, b, c, d, e, g a2q2>
va, —a, ag/b, aq/c, ag/d, ag/e, aq/g P bedeg

_ (ag:9)o(aq/dg; 4)o(aq/eg; ) o (ag/de; q)o 5 (aq/bc, d, e g ,q_q)
(aq/d; q)o(aq/€; q)oo(aq/ g @)oo (aq/deg; ¢) s deg/a, aq/b, agq/c '

(1)

Under suitable changes of variables and limiting cases, the Watson-Whipple ¢g-hypergeometric
transformation formula leads to the following identity

Z (o, 8,70, 6 Q) (1 — ag®)g" "/ <_ = )n
(aq/B,aq/,aq/0, 0@/6 ¢ (1 —a) \ Byoe

 (aq,0q/(06); Qoo x—~ (6,6,00/(87);0)n [aq\"
2  (ag/s, aq/e q)oo Z (aq/B,aq/v,q; Qn (56)

n>0




Problem 8. (xx) Prove that

1 — wq" (w; @)oo (q/ W5 @)

Z (—1)rgrvth/z (¢;9)%
nez

and deduce modular properties of the associated Appell-lerch sums, i.e., in terms of

> (1) g™
M(ZDZQ;T) = Cfﬁ*l (22,7')2 2 ’ (C] — €2ﬂ-lzj).
neZ

1 —Gig"

[Hint: Use (limiting) Watson-Whipple ¢-hypergeometric transformations, i.e. use (2).]

Problem 9. (xx) Recall that the rank of a partition is defined to be its largest part minus the
number of its parts, and N(n,m) := #{partitions of n rank m}.

(a) Show that

n2

Z Z N(n,m)w™q" = Z q

n>0 mez n>0 (wa; @)ula/w; q)n

(Recall that the third order mock theta function f(q) satisfies f(¢) = R(—1;¢q).)

(b) Determine a combinatorial interpretation for the coefficients of the third order
mock theta function

2n(n+1)
wlq) =Y .

Check your interpretation by computing partitions of a few small integers.

. : q"
Hint: First prove (see [6]) that qw(q) = —_—

| s ) that gule) = 30
Problem 10. (xx) Prove the mock theta identities (used in Watson’s transformation)

n(3n+1)

flg) = —— S

(€D £ 140"
n 3n(n+1)

1 —1
w(q) = . Z : 1 )_Z2n+1

nel

[Hint: Use (limiting) Watson-Whipple ¢-hypergeometric transformations, i.e. use (1),

and that the expressions above for f and w may be re-written as
n(3n+1)

(=1)"g" 1 o amsny 1+ g2 .
(Q' (]) <1+4Z 1+qn _> and _(qg, qg) Z(_l) q m, respectlvely.]
y{d ) oo =1 ; ~




Problem 11.

Problem 12.

Problem 1.

(xx) Recall that Watson’s contour involves integrating the function
-e0+ic P co+ic
| < < [
3022 ' !
Culz) = 1 OP(302/2) g |
sin(mz) cosh(az/2) L -
) Iic 4 4 o-ic

(where (a) > 0) around a contour as depicted above (where ¢ > 0 is small enough
so that the zeros of sin(7z) (which occur at z € Z) are the only poles of the inte-
grand between the lines forming the contour). Prove that the integral of C,(z) (as a
function of z) over the vertical edges of the contour yields a contribution of 0.

(#x) Let a € (—=1,%),b € R,7 € H, and write 7 = z + 4y, z = u + iv. Prove that

Zwegers’ non-holomorphic
1 n2
Rm)= 3 (sau =8 ((n+2) var) ) (- bo
ne3+7 Y
(where E(z) :=2 [ e~ dt) satisfies
oo Jat1p+1 (2)
7 A/ —i(z4T)

where g,4(7) =D, caiz pem iV THmvh (g ph e R) is a modular theta function.

2 . 1
_e T T+2ma(b+2)R(aT o b’ ,7_) _

dz,

2. HARMONIC MAASS FORMS AND QUANTUM MODULAR FORMS
(xx) Let 0 < a < ¢ be integers. Consider the harmonic Maass form
D(a,¢;7) = g0 H a, ;4 f20) + V(a,6:227),
where f. := 2¢/ ged(2¢,4), and
Via,c;7) = 1 /ioo (—iz)_3/2r(a,c; —1/2) dz,
2) = —i(z +7)
T(a,c;7) = zZ(n +1/4) cosh(2mi(n + 1/4)(2a/c — 1))62””(”%)2,

ne”

n n+1)/2(

( .
H(a;c;1) = Z e 4 4 @)

= (@ Dnia (¢ D

(a) Prove that D(a, c;T)’s Fourier expansion is that of a harmonic Maass form, i.e.,
of the shape

M(r)= > ch(n)g"+ ) cu(nT(1 =k, —4mny)q".
n>>>—oo n<0
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(b) Prove that D(a,c;7) is annihilated by the weight 1/2 Laplacian operator
0?02 iy (0 0
A1l = — ) o = | — — | .
2 Y (3x2+8y2) * 2 <8x+18y>
[Hint: First (show, and) use the factorization Ay, = —4y*/%0,,/y0-.]

Problem 2. (x) Recall that
So—rt Ha g (To(IN)) — S(L'o(N))

where

0
= k=
&k W o=

Verify that for M € Hy 1 (I'o(N)), (&2-xM)(7) transforms like a weight & modular
form on T'y(N).

Problem 3. (x) Let e(z) := €*™*. For z € C, 7 € H, define the Mordell integral
2 2 —2mzx
h(z;71) = / e(rz’/2)e dx.
R

cosh(mz)

Prove that
h(z;7) + e(—z)q_l/Qh(z +7;7) = 26(—2/2)q_1/8.

[Hint: write 2 (2 + 7;7) in terms of an integral [; ... Use the Residue Theorem.|

2 .
Problem 4. (x+) Prove that h(z;7) 4 h(z 4 1;7) = ———e™ 12/,
—iT

[Hint: The integral 2 [, ™" ~27(+3)dy can be explicitly evaluated as 2(—ir)~1/2em(=+2)*/7 |

Problem 5. (xx) Prove that z — h(z;7) is the unique holomorphic function satisfying the prop-
erties from the previous two problems.

[Hint: Liouville’s theorem.]

Problem 6. (x) Prove that Ramanujan’s mock theta function f(q) satisfifes f({) = O(1) at odd
ordered roots of unity (.



Problem 7. (x) Recall that a strongly unimodal sequence {a;}5_; of size n is such that 0 < a; <
g < +++ < Qp > Qpyy >+ > ag >0 and Zj.:laj =n, and its rank is s — 2r + 1 (the
difference between the number of terms after and before the peak of the sequence).
We let u(m,n) := #{strongly unimodal sequences of size n and rank m}. Show that

Uw;q) ==Y > ulm,n)w™q" = (—wg; @)n(—w""g; ¢)ng™"".

n>1 mez n>0

Problem 8. (%) Verify, as in the F-O-R radial limit theorem, that U((?; () is a convergent, finite,
sum, evaluated at pairs of roots of unity (¢%,¢P) with b | k.

For the next problem, we consider other of Ramanujan’s mock theta functions

qn2 an
qb(Q) = E ) ’ w(Q) = E . )
= (=a%¢%)n = (@ ¢%)n
along with the (nearly) modular product
(¢* "%

c(q) := )
A PR
The next exercises establish the following proposition studied by R. C. Rhoades.

Proposition. As ¢ — ( radially from within the unit disk, where ( is a primitive 4kth root
of unity, we have that

lim(¢(q) — c(q)) = =2 ) ¢"H(=¢%¢P)n = —¥(Q).

_>
q—¢C >0

Moreover, as ¢ — p radially from within the unit disk, where p is a primitive odd order root
of unity, we have that

lim((q) — c(q)/2) = —% <1 + ) (=1 (p; pz)n> :
Problem 9. (xx)
(a) Prove that ¢/(q) = Y 4" (=¢";¢*)n-

[Hint: use a ¢-hypergeometric identity from [6].|

(b) Prove that ¢(q) + 2¢(q) = c(q).

[Hint: Apply Ramanujan’s 17y summation

(o, B 2) = 3 ggfg;:zn _ <fq//g ;7((;/2 <)a;>’g;qq)to (18/a] < 2] < 1)

6
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(c) Prove for any primitive 4kth root of unity ¢, we have

lim (6(q) = e(q) = =2 "=

n>0

(d) Prove that ¢(q) = L+ > _(=1)"¢*""(g; ¢*)n.

n>0

[Hint: use a ¢-hypergeometric identity from [6].|

(e) Prove for any primitive odd order root of unity p, we have

lim (15(q) — c(g)/2) = <1+Z >>

q—p
n>0

Problem 10. (xx) Let f = }_ . a(n)¢" be a weight k € 2 4+ Ny cusp form with respect to the
congruence subgroup I'g(4N), so that for v = (25) € T'y(4N) and 7 € H,

fom) = (5) e ter + )£ ().

1 ifd=1 (mod 4)
i ifd=3 (mod4)
Prove that the non-homomorphic Eichler integral

i k—1
ro = [ s -,

satisfies for (2%) € I'y(4N) and 7 € H,

f(7) — (_74) (2) e k(T +d)f2f (Ziz) F2m / fw)(w —7)"2dw.

(Since the asymptotic expansions of f* and the homomorphlc Eichler integral of

ff = Yot n'"*a(n)q" agree at any ¢ € Q, this gives the quantum modularity

where (ﬁ) is the Kronecker symbol and ¢; =

properties of fwhen approaching the real line.)

Problem 11. (%) Verify that

In(Ti2); Cn') = G FGYY,
JN(T(2,3)7 (n) = C]QIU<_1§ Cn).

Problem 12. (xx)
(a) Show that Fy(q) (defined by Hikami and Lovejoy) has the form

= au(9)(g;9)

n>0
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1

2]
13l
4]
5]
[6]
17l
18]
19]
[10]

[11]
[12]

[13]

[14]

where a,(q) € Z|q], and thus is an element of the Habiro ring.

(b) Determine the first couple of coefficients ¢, such that

Fy(q) =) el =g

n>0
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