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These problems3 were selected to complement the lectures and give a wide variety of
choice. Please note that there are more problems here than can be completed during the
exercise sessions. You are not expected to attempt every problem or finish the problems
during the available time, but we hope that there are problems here that you find engaging.
In general it is not necessary to work problems in the order presented, although it will be
clear by context that some problems are sequential. Each problem is labeled (with ⋆, ⋆⋆) to
indicate difficulty level.

1. Modular, Quasimodular, and Mock Modular Forms

Problem 1. (⋆) (MDG Exercise 4.3.9) Show that E2
4 = E8. Deduce that for all n ≥ 0,

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n−m).

Problem 2. (⋆⋆) (MDG Exercise 4.4.5) Prove that ∆ =
E3

4−E2
6

1728
has integral Fourier coefficients.

Problem 3. (⋆⋆) (MDG Exercise 5.4.4) Prove that

(E3
4 − E2

6)
2 ≡ (E4E2 − 1)2 ≡ −qdE

2
2

dq
− 3q

dE4

dq
(mod 7).

[Hint: First show that E2
4 ≡ E2 (mod 7) and E6 ≡ 1 (mod 7).]

Problem 4. (⋆⋆) (MDG Exercise 5.4.5) Prove that

(E3
4 − E2

6)
2 ≡ q2

(
∞∑
n=0

p(n)qn

)
∞∏
n=1

(1− q49n) (mod 7),

where p(n) is the partition counting function. Deduce that for n ≥ 0,

p(7n+ 5) ≡ 0 (mod 7).
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Problem 5. (⋆⋆) (MDG Exercise 5.5.3) Let ∆(τ) =
∑

n≥1 t(n)q
n. Prove that

t(n) ≡ σ11(n) (mod 691).

[Hint: First show that E2
6 = E12 − 762048

691
∆ and E12 = 1 + 65520

691

∑∞
n=1 σ11(n)q

n.]

Problem 6. (⋆) Define Ẽk = ckEk such that Ẽk = ck +
∑

n≥1 σk−1(n)q
n. Let a, b be odd integers

with a > b. Show that the quasimodular form

f = (Da + 1)Ẽb+1 − (Db + 1)Ẽa+1

is prime detecting.

Problem 7. (⋆) Let S be a set of positive integers, and pS(n) the number of partitions of n with
parts in S.
(a) Show that for |q| < 1,

PS(q) :=
∑
n≥0

pS(n)q
n =

∏
n∈S

1

1− qn
.

(b) Find sets S for which PS(q) is modular (when q = e2πiτ ).

Certain problems below (e.g. Problem 8, Problem 10) require some of the theory of
q-hypergeometric series [6, 8]. Namely, with (a1, a2, . . . , ar; q)n :=

∏r
j=1(aj; q)n, the q-

hypergeometric series are defined by

rϕs

(
a1, a1, . . . ar
b1, b2, . . . bs

q; z

)
:=
∑
n≥0

(a1, a2, . . . , ar; q)n
(b1, b2, . . . , bs, q; q)n

((−1)nq
n(n−1)

2 )1+s−rzn

where r, s ∈ N0, |z| < 1, |q| < 1, bj ̸= q−m for any m ∈ N0. The celebrated Watson-Whipple
transformation is given by

8ϕ7

(
a, q

√
a, −q

√
a, b, c, d, e, g√

a, −
√
a, aq/b, aq/c, aq/d, aq/e, aq/g

; q;
a2q2

bcdeg

)
=

(aq; q)∞(aq/dg; q)∞(aq/eg; q)∞(aq/de; q)∞
(aq/d; q)∞(aq/e; q)∞(aq/g; q)∞(aq/deg; q)∞

4ϕ3

(
aq/bc, d, e, g
deg/a, aq/b, aq/c

; q; q

)
.(1)

Under suitable changes of variables and limiting cases, the Watson-Whipple q-hypergeometric
transformation formula leads to the following identity

∑
n≥0

(α, β, γ, δ, ϵ; q)n(1− αq2n)qn(n+3)/2

(αq/β, αq/γ, αq/δ, αq/ϵ, q; q)n(1− α)

(
− α2

βγδϵ

)n

=
(αq, αq/(δϵ); q)∞
(αq/δ, αq/ϵ; q)∞

∑
n≥0

(δ, ϵ, αq/(βγ); q)n
(αq/β, αq/γ, q; q)n

(αq
δϵ

)n
.(2)
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Problem 8. (⋆⋆) Prove that ∑
n∈Z

(−1)nqn(n+1)/2

1− wqn
=

(q; q)2∞
(w; q)∞(q/w; q)∞

,

and deduce modular properties of the associated Appell-lerch sums, i.e., in terms of

µ (z1, z2; τ) := ζ
1
2
1 ϑ

−1 (z2; τ)
∑
n∈Z

(−1)nζn2 q
n(n+1)

2

1− ζ1qn
, (ζj := e2πizj).

[Hint: Use (limiting) Watson-Whipple q-hypergeometric transformations, i.e. use (2).]

Problem 9. (⋆⋆) Recall that the rank of a partition is defined to be its largest part minus the
number of its parts, and N(n,m) := #{partitions of n rank m}.

(a) Show that∑
n≥0

∑
m∈Z

N(n,m)wmqn =
∑
n≥0

qn
2

(wq; q)n(q/w; q)n
.

(Recall that the third order mock theta function f(q) satisfies f(q) = R(−1; q).)

(b) Determine a combinatorial interpretation for the coefficients of the third order
mock theta function

ω(q) :=
∑
n≥0

q2n(n+1)

(q; q2)2n+1

.

Check your interpretation by computing partitions of a few small integers.

[Hint: First prove (see [6]) that qω(q) =
∑
n≥1

qn

(q; q2)n
. ]

Problem 10. (⋆⋆) Prove the mock theta identities (used in Watson’s transformation)

f(q) =
2

(q; q)∞

∑
n∈Z

(−1)nq
n(3n+1)

2

1 + qn
,

ω(q) =
1

(q2; q2)∞

∑
n∈Z

(−1)nq3n(n+1)

1− q2n+1
.

[Hint: Use (limiting) Watson-Whipple q-hypergeometric transformations, i.e. use (1),
and that the expressions above for f and ω may be re-written as

1

(q; q)∞

(
1+4

∑
n≥1

(−1)nq
n(3n+1)

2

1 + qn

)
and

1

(q2; q2)∞

∑
n≥0

(−1)nq3n(n+1) 1 + q2n+1

1− q2n+1
, respectively.]
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Problem 11. (⋆⋆) Recall that Watson’s contour involves integrating the function

Cα(z) :=
π

sin(πz)

exp(−3αz2/2)

cosh(αz/2)

(where ℜ(α) > 0) around a contour as depicted above (where c > 0 is small enough
so that the zeros of sin(πz) (which occur at z ∈ Z) are the only poles of the inte-
grand between the lines forming the contour). Prove that the integral of Cα(z) (as a
function of z) over the vertical edges of the contour yields a contribution of 0.

Problem 12. (⋆⋆) Let a ∈ (−1
2
, 1
2
), b ∈ R, τ ∈ H, and write τ = x + iy, z = u + iv. Prove that

Zwegers’ non-holomorphic

R(z; τ) :=
∑

n∈ 1
2
+Z

(
sgn(n)− E

((
n+

v

y

)√
2y

))
(−1)n−

1
2 ζ−nq−

n2

2

(where E(z) := 2
∫ z

0
e−πt2dt) satisfies

−e−πia2τ+2πia(b+ 1
2
)R(aτ − b; τ) =

∫ i∞

−τ

ga+ 1
2
,b+ 1

2
(z)√

−i(z + τ)
dz,

where ga,b(τ) :=
∑

ν∈a+Z νe
πiν2τ+2πiνb (a, b ∈ R) is a modular theta function.

2. Harmonic Maass Forms and Quantum Modular Forms

Problem 1. (⋆⋆) Let 0 < a < c be integers. Consider the harmonic Maass form

D(a, c; τ) := q4f
2
c

a
c (1−

a
c )H(a, c; 4f 2

c τ) + V (a, c; 2f 2
c τ),

where fc := 2c/ gcd(2c, 4), and

V (a, c; τ) := −1

2

∫ i∞

−τ

(−iz)−3/2T (a, c;−1/2z)√
−i(z + τ)

dz,

T (a, c; τ) := i
∑
n∈Z

(n+ 1/4) cosh(2πi(n+ 1/4)(2a/c− 1))e2πiτ(n+
1
4)

2

,

H(a; c; τ) :=
∑
n≥0

qn(n+1)/2(−q; q)n
(qa/c; q)n+1(q1−a/c; q)n+1

.

(a) Prove that D(a, c; τ)’s Fourier expansion is that of a harmonic Maass form, i.e.,
of the shape

M(τ) =
∑

n≫−∞

c+M(n)qn +
∑
n<0

c−M(n)Γ(1− k,−4πny)qn.
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(b) Prove that D(a, c; τ) is annihilated by the weight 1/2 Laplacian operator

∆ 1
2
:= −y2

(
∂2

∂x2
+

∂2

∂y2

)
+
iy

2

(
∂

∂x
+ i

∂

∂y

)
.

[Hint: First (show, and) use the factorization ∆1/2 = −4y3/2∂τ
√
y∂τ .]

Problem 2. (⋆) Recall that

ξ2−k : H2−k(Γ0(N)) ↠ Sk(Γ0(N))

where

ξk := 2iyk
∂

∂τ
.

Verify that for M ∈ H2−k(Γ0(N)), (ξ2−kM)(τ) transforms like a weight k modular
form on Γ0(N).

Problem 3. (⋆) Let e(z) := e2πiz. For z ∈ C, τ ∈ H, define the Mordell integral

h(z; τ) :=

∫
R

e(τx2/2)e−2πzx

cosh(πx)
dx.

Prove that

h(z; τ) + e(−z)q−1/2h(z + τ ; τ) = 2e(−z/2)q−1/8.

[Hint: write h(z + τ ; τ) in terms of an integral
∫
R+i

. Use the Residue Theorem.]

Problem 4. (⋆⋆) Prove that h(z; τ) + h(z + 1; τ) =
2√
−iτ

eπi(z+1/2)2/τ .

[Hint: The integral 2
∫
R e

πiτx2−2πx(z+ 1
2
)dx can be explicitly evaluated as 2(−iτ)−1/2eπi(z+

1
2
)2/τ .]

Problem 5. (⋆⋆) Prove that z 7→ h(z; τ) is the unique holomorphic function satisfying the prop-
erties from the previous two problems.

[Hint: Liouville’s theorem.]

Problem 6. (⋆) Prove that Ramanujan’s mock theta function f(q) satisfifes f(ζ) = O(1) at odd
ordered roots of unity ζ.
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Problem 7. (⋆) Recall that a strongly unimodal sequence {aj}sj=1 of size n is such that 0 < a1 <
a2 < · · · < ar > ar+1 > · · · > as > 0 and

∑s
j=1 aj = n, and its rank is s− 2r+ 1 (the

difference between the number of terms after and before the peak of the sequence).
We let u(m,n) := #{strongly unimodal sequences of size n and rank m}. Show that

U(w; q) :=
∑
n≥1

∑
m∈Z

u(m,n)wmqn =
∑
n≥0

(−wq; q)n(−w−1q; q)nq
n+1.

Problem 8. (⋆) Verify, as in the F-O-R radial limit theorem, that U(ζab ; ζhk ) is a convergent, finite,
sum, evaluated at pairs of roots of unity (ζab , ζ

h
k ) with b | k.

For the next problem, we consider other of Ramanujan’s mock theta functions

ϕ(q) :=
∑
n≥0

qn
2

(−q2; q2)n
, ψ(q) :=

∑
n≥1

qn
2

(q; q2)n
,

along with the (nearly) modular product

c(q) :=
(q2; q2)7∞

(q; q)3∞(q4; q4)3∞
.

The next exercises establish the following proposition studied by R. C. Rhoades.

Proposition. As q → ζ radially from within the unit disk, where ζ is a primitive 4kth root
of unity, we have that

lim
q→ζ

(ϕ(q)− c(q)) = −2
∑
n≥0

ζn+1(−ζ2; ζ2)n = −ψ(ζ).

Moreover, as q → ρ radially from within the unit disk, where ρ is a primitive odd order root
of unity, we have that

lim
q→ρ

(ψ(q)− c(q)/2) = −1

2

(
1 +

∑
n≥0

(−1)nρ2n+1
(
ρ; ρ2

)
n

)
.

Problem 9. (⋆⋆)

(a) Prove that ψ(q) =
∞∑
n=0

qn+1(−q2; q2)n.

[Hint: use a q-hypergeometric identity from [6].]

(b) Prove that ϕ(q) + 2ψ(q) = c(q).

[Hint: Apply Ramanujan’s 1ψ1 summation

1ψ1(α, β; q; z) :=
∑
n∈Z

(α; q)n
(β; q)n

zn =
(β/α, αz, q/(αz), q; q)∞
(q/α, β/(αz), β, z; q)∞

(|β/α| < |z| < 1).]
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(c) Prove for any primitive 4kth root of unity ζ, we have

lim
q→ζ

(ϕ(q)− c(q)) = −2
∑
n≥0

ζn+1(−ζ2; ζ2)n.

(d) Prove that ϕ(q) = 1 +
∑
n≥0

(−1)nq2n+1(q; q2)n.

[Hint: use a q-hypergeometric identity from [6].]

(e) Prove for any primitive odd order root of unity ρ, we have

lim
q→ρ

(ψ(q)− c(q)/2) = −1

2

(
1 +

∑
n≥0

(−1)nρ2n+1(ρ; ρ2)n

)
.

Problem 10. (⋆⋆) Let f =
∑

n≥1 a(n)q
n be a weight k ∈ 1

2
+ N0 cusp form with respect to the

congruence subgroup Γ0(4N), so that for γ = ( a b
c d ) ∈ Γ0(4N) and τ ∈ H,

f(γτ) =
( c
d

)
ε−2k
d (cτ + d)kf(τ),

where
(
c
d

)
is the Kronecker symbol and εd =

{
1 if d ≡ 1 (mod 4)

i if d ≡ 3 (mod 4)
.

Prove that the non-homomorphic Eichler integral

f ∗(τ) =
(−2πi)k−1

Γ(k − 1)

∫ i∞

τ

f(w)(w − τ)k−2dw,

satisfies for ( a b
c d ) ∈ Γ0(4N) and τ ∈ H,

f ∗(τ)−
(
−4

d

)( c
d

)
ε−2k
d (cτ + d)k−2f ∗

(
aτ + b

cτ + d

)
=

(−2πi)k−1

Γ(k − 1)

∫ i∞

− d
c

f(w)(w − τ)k−2dw.

(Since the asymptotic expansions of f ∗ and the homomorphic Eichler integral of
f , f̃ =

∑
n≥1 n

1−ka(n)qn agree at any d
c
∈ Q, this gives the quantum modularity

properties of f̃ when approaching the real line.)

Problem 11. (⋆) Verify that

JN(T(2,3); ζ
−1
N ) = ζ−1

N F (ζ−1
N ),

JN(T
∗
(2,3); ζN) = ζ−1

N U(−1; ζN).

Problem 12. (⋆⋆)
(a) Show that F2(q) (defined by Hikami and Lovejoy) has the form

F2(q) =
∑
n≥0

an(q)(q; q)n,
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where an(q) ∈ Z[q], and thus is an element of the Habiro ring.

(b) Determine the first couple of coefficients cn such that

F2(q) =
∑
n≥0

cn(1− q)n.
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