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1. Introduction and statement of results

A sequence of integers {aj}sj=1(s ∈ N) is called a strongly unimodal sequence of size 
n if there exists a positive integer k such that

0 < a1 < a2 < · · · < ak > ak+1 > · · · > as > 0,

and a1 + · · ·+ as = n. The rank of a strongly unimodal sequence is equal to 2k− s − 1.1
Odd-balanced unimodal sequences allow odd parts to repeat on either side of the peak ak, 
but they must be identical on either side, and the peak must be even. Let ν(m, n) be the 
number of such sequences with rank m and size 2n.2 The two-variable rank generating 
function for odd-balanced unimodal sequences satisfies [8]

qV (w; q) :=
∑
n≥0

(−wq; q)n(−w−1q; q)nqn+1

(q; q2)n+1
=

∑
n≥1
m∈Z

ν(m,n)wmqn. (1.1)

Here and throughout, the q-Pochhammer symbol is defined by (w; q)n :=
∏n−1

j=0 (1 −wqj)
for n ∈ N0 ∪ {∞}.

In [1], the notion of a quantum Jacobi form is introduced by Bringmann and the 
second author, marrying Zagier’s notion of a quantum modular form [12] with that of 
a Jacobi form (see §2 for a precise definition and more details). In [1] it is also proved 
that the two-variable combinatorial generating function for ranks of strongly unimodal 
sequences is an example of such a form – this is the first and only example of such 
a function in the literature to-date. Here we prove that two additional combinatorial 
functions are quantum Jacobi forms, one of which is a normalized version of the function 
in (1.1). Precisely, we define

V+(z; τ) := 2 cos(πz)V(w; q)q 7
8 , (1.2)

on C × H with w := e(z), q := e(τ), where here and throughout e(α) := e2πiα. In 
Theorem 1.1, we prove that V+ is a quantum Jacobi form with respect to the congruence 
subgroup Γ0(4) ⊆ SL2(Z). In fact, we prove that V+ has the stronger property that it 
exhibits mock Jacobi transformations in C ×H as well as quantum Jacobi transformations 
in Q × Q. By exploiting these quantum Jacobi properties, we also obtain a new simple 
expression for V+ as a Laurent polynomial when evaluated at pairs of rational numbers 
(see Theorem 1.3).

In order to state our results related to V+ precisely, we first define the “errors of 
modularity”

1 Here, we use the definition of rank as in [8]. Other sources such as [2] define rank to be −(2k− s − 1) =
s − 2k + 1.
2 Note that ν(m, n) = v(m, n − 1), where v is as defined in [8].
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H1(z; τ) := −1
2

√
i

τ
e

πiz2
τ h

(
z

τ
; −1 − 4τ

τ

)
− 1

2
h(z; τ), (1.3)

H2(z; τ) :=
η(2τ)ϑ

(
z + 1

2 ; τ
)

2η2(τ)

(
−i

√
i

2τ e
2πiz2

τ h

(
z

τ
; −1 − 4τ

2τ

)
− h(2z; 2τ)

)
, (1.4)

where for z ∈ C, τ ∈ H, the Mordell integral h is given by

h(z; τ) :=
∫
R

eπiτt
2−2πzt

cosh(πt) dt, (1.5)

and η, ϑ are the familiar holomorphic modular and Jacobi forms defined in (2.3).
Theorem 1.1 below establishes the quantum Jacobi (and mock Jacobi) transformation 

properties of the two-variable combinatorial generating function V+. The set QV ⊆ Q ×Q

is defined explicitly in §3.

Theorem 1.1. The following transformation properties hold.

(i) For (z, τ) ∈ (C ×H) ∪QV , we have that

V+(z; τ) − e
πi
4 V+(z; τ + 1) = 0, (1.6)

V+(z; τ) − V+(−z; τ) = 0, (1.7)

V+(z; τ) + (4τ + 1)− 1
2 e

4πiz2
4τ+1 V+

(
z

4τ + 1; τ

4τ + 1

)
= H1(z; τ) + H2(z; τ),

(
τ �= −1

4
)
, (1.8)

V+(z; τ) + V+(z + 1; τ) = 0, (1.9)

V+(z; τ) + e−2πiz−πiτV+(z + τ ; τ) = −e−2πiz−πiτ
2

ϑ
(
z + 1

2 ; τ
)
η(2τ)

η2(τ) − e−πiz−πiτ
4 .

(1.10)

(ii) In particular, for (z, τ) ∈ QV , we have that

V+(z; τ) + (4τ + 1)− 1
2 e

4πiz2
4τ+1 V+

(
z

4τ + 1; τ

4τ + 1

)
= H1(z; τ),

(
τ �= −1

4
)
,

(1.11)

V+(z; τ) + e−2πiz−πiτV+(z + τ ; τ) = −e−πiz−πiτ
4 . (1.12)

The function H1 on the right-hand side of (1.11) extends to a C∞ function on 
(R \ (Z + {1

2 , ±
1
8 , ±

3
8})) × (R \ {−1

4}), and the function on the right-hand-side of 
(1.12) extends to a C∞ function on R × R.
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Remarks.

(1) Theorem 1.1 shows that the function V+ is a quantum Jacobi form of weight 1
2 and 

index −1
2 with respect to Γ0(4), which is generated by 

( 1 1
0 1

)
, 
(

−1 0
0 −1

)
, and 

( 1 0
4 1

)
. 

Direct calculation shows that QV is invariant under the action of Γ0(4).
(2) In (1.8) and (1.11), we must exclude pairs (z, τ) with τ = −1

4 in order to avoid 
singularities. For any γ ∈ Γ0(4), we similarly must exclude pairs (z, τ) with τ =
γ−1(i∞) in the analogues to (1.8) and (1.11).

We also study the quantum Jacobi properties of a second combinatorial q-hypergeo-
metric series, namely, the function

W(w; q) :=
∑
n≥0

(wq; q2)n(w−1q; q2)nq2n

(−q; q)2n+1
.

It is explained in [8] that a normalized version of W also has combinatorial meaning as 
a two-variable partition rank generating function related to partitions without repeated 
odd parts. Parallel to Theorem 1.1, in Theorem 1.2 below, we establish the quantum 
Jacobi (and mock Jacobi) properties of the normalized function

W+(z; τ) := 2q 3
8 cos(πz)W(w; q 1

2 ). (1.13)

The “error” functions G1 and G2 in (1.16) and (1.19) are defined in (4.15) and (4.16)
respectively; like the functions H1 and H2 in (1.3) and (1.4), they are defined in terms 
of the Mordell integral h defined in (1.5). The set QW ⊆ Q ×Q is defined in §3.

Theorem 1.2. The following transformation properties hold.

(i) For (z, τ) ∈ (C ×H) ∪QW , we have that

W+(z; τ) − iW+(z; τ + 1) = 0, (1.14)

W+(z; τ) −W+(−z; τ) = 0, (1.15)

W+(z; τ) + ie
2πiz2
2τ+1 (2τ + 1)− 1

2W+
(

z

2τ + 1; τ

2τ + 1

)
= G1(z; τ) + G2(z; τ),

(1.16)

W+(z; τ) + W+(z + 1; τ) = 0, (1.17)

W+(z; τ) + e−2πiz−πiτW+(z + τ ; τ)

= 2e−πize
−πiτ

4 + i(e−2πiz − eπiτ )e
−7πiτ

8
η( τ2 )ϑ(z + τ

2 ; τ)
η2(τ) . (1.18)
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(ii) In particular, for (z, τ) ∈ QW , we have that

W+(z; τ) + ie
2πiz2
2τ+1 (2τ + 1)− 1

2W+
(

z

2τ + 1; τ

2τ + 1

)
= G1(z; τ), (1.19)

W+(z; τ) + e−2πiz−πiτW+(z + τ ; τ) = 2w− 1
2 q−

1
8 . (1.20)

The function G1 on the right-hand-side of (1.19) extends to a C∞ function on 
(R \ (Z + { 1

2 , ±
1
4})) × (R \ {−1

2}), and the function on the right-hand-side of (1.20)
extends to a C∞ function on R × R.

Remark. Theorem 1.2 implies that the function W+(z; τ) is a quantum Jacobi form of 
weight 1/2 and index −1/2 with respect to the group Γ0(2), which is generated by 

( 1 1
0 1

)
and 

( 1 0
2 1

)
. Direct calculation shows that QW is invariant under the action of Γ0(2). See 

also the second remark after Theorem 1.1; an analogous statement applies here.

Using quantum properties established in Theorem 1.1 and Theorem 1.2, we show in 
Theorem 1.3 that V+ and W+ can be expressed as simple Laurent polynomials when 
evaluated at pairs of rationals in QV and QW , respectively. We point out that these 
evaluations are nontrivial, in that they do not simply follow from the q-hypergeometric 
definitions of the functions V and W. Evaluations of the type exhibited in Theorem 1.3
have been of recent interest, as they pertain to radial limits of mock theta functions 
[1,3,6,7,13].

Theorem 1.3. The following identities hold.

(i) For (ab , 
h
k ) ∈ QV , we have that

V+(ab ,
h
k ) = −1

2ζ
−a
2b ζ7h

8k

k−1∑
j=0

(−1)jζ−hj(j+1)
2k ζ−aj

b .

(ii) For (ab , 
h
k ) ∈ QW , we have that

W+ (
a
b ; h

k

)
= ζa2bζ

−h
8k

k−1∑
j=0

(−1)jζ−hj(j+1)
2k ζajb .

The remainder of this paper is organized as follows. In §2, we recall the definition 
of a quantum Jacobi form and discuss properties of some required (mock) Jacobi and 
modular forms. In §3, we introduce some auxiliary lemmas that are instrumental to our 
work. We present the proofs of our main theorems in §4.
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2. Preliminaries

2.1. Quantum modular forms

The definition of a quantum modular form was originally introduced by Zagier in 
[12] and has since been slightly modified to allow for half-integral weights, subgroups of 
SL2(Z), etc. (See, for example, [1,4].)

Definition 2.1. A weight k ∈ 1
2Z quantum modular form is a complex-valued function f

on Q, such that for all γ =
(
a b
c d

)
∈ SL2(Z), the functions hγ : Q \ γ−1(i∞) → C defined 

by

hγ(x) := f(x) − ε−1(γ)(cx + d)−kf

(
ax + b

cx + d

)
satisfy a “suitable” property of continuity or analyticity in a subset of R.

Remarks.

(1) The complex numbers ε(γ), which satisfy |ε(γ)| = 1, are such as those appearing in 
the theory of half-integral weight modular forms.

(2) We may modify Definition 2.1 appropriately to allow transformations on finite index 
subgroups of SL2(Z). We may also restrict the domains of the functions hγ to be 
suitable subsets of Q.

Since the time of origin of this definition in 2010, the theory of quantum modular forms 
has been widely explored (see for example [4], and references therein). Some recent and 
relevant examples of quantum modular forms arise from the combinatorial generating 
functions V and W. More precisely, Kim, Lim and Lovejoy showed in [8] that the three 
functions

q−7V(1; q−8) = −1
2
∑
n≥0

χ(n)qn
2
, q−3W(1, q−4) =

∑
n≥0

χ(n)qn
2
, (2.1)

q−7V(−1; q−8) = −1
2
∑
n≥0

(2n + 1)q(2n+1)2 , (2.2)

where χ(n) is a Dirichlet character (mod 4), are quantum modular forms. In particular, 
the functions in (2.1) are of weight 1/2, and the function in (2.2) is of weight 3/2. Note 
that the parameters w above in V(w; q) and W(w; q) are fixed to be ±1, and these 
functions are viewed in [8] as one-variable quantum modular forms in τ ∈ Q, where 
q = e2πiτ . Our work described in §1 and discussed further in the following sections 
establishes the general two-variable quantum Jacobi (and mock Jacobi) properties of 
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the functions V(w; q) and W(w; q) in the variables (w, q) = (e2πiz, e2πiτ ), where (z, τ) ∈
(Q ×Q) ∪ (C ×H).

2.2. Quantum Jacobi forms

The definition of a quantum Jacobi form was originally introduced by Bringmann 
and the second author in [1], marrying Zagier’s definition of a quantum modular form 
[12] with that of a Jacobi form, the theory of which was largely developed by Eichler 
and Zagier [5]. That is, a quantum Jacobi form is a two-variable analogue of a quantum 
modular form, similar to how a (holomorphic) Jacobi form is a two-variable analogue of 
a (holomorphic) modular form. We recall the definition of a quantum Jacobi form from 
[1] here.

Definition 2.2. A weight k ∈ 1
2Z and index m ∈ 1

2Z quantum Jacobi form is a complex-
valued function on Q ×Q such that for all γ =

(
a b
c d

)
∈ SL2(Z) and (λ, μ) ∈ Z × Z, the 

functions hγ : Q × (Q \ γ−1(i∞)) → C and g(λ,μ) : Q ×Q → C defined by

hγ(z; τ) := φ(z; τ) − ε−1
1 (γ)(cτ + d)−ke

−2πimcz2
cτ+d φ

(
z

cτ + d
; aτ + b

cτ + d

)
,

g(λ,μ)(z; τ) := φ(z; τ) − ε−1
2 ((λ, μ))e2πim(λ2τ+2λz)φ(z + λτ + μ; τ),

satisfy a “suitable” property of continuity or analyticity in a subset of R × R.

Remarks.

(1) The complex numbers ε1(γ) and ε2((λ, μ)) satisfy |ε1(γ)| = |ε2((λ, μ))| = 1; in 
particular, the ε1(γ) are such as those appearing in the theory of half-integral weight 
forms.

(2) We may modify the definition to allow modular transformations on subgroups of 
SL2(Z). We may also restrict the domains of the functions hγ and g(λ,μ) to be suitable 
subsets of Q ×Q.

As mentioned in §1, the first example of a quantum Jacobi form is provided in [1]. In 
particular, Bringmann and the second author proved that the function on C ×H defined 
by

Y +(z; τ) := −2i sin(πz)q− 1
24U(z; τ)

is a quantum Jacobi form of weight 1
2 and index −3

2 , where

U(w; q) :=
∞∑

(wq; q)n(w−1q; q)nqn+1.

n=0
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Like V and W, the function U also has combinatorial meaning: it is the rank generating 
function for strongly unimodal sequences.

2.3. “Modular” and “elliptic” forms

Here we recall some transformation properties of various “modular” and “elliptic” 
objects, where we use these terms loosely to encompass various types of forms (nonholo-
morphic, Jacobi, mock, etc.). We begin with the Mordell integral h defined in §1. The 
following elliptic properties were given by Zwegers in [14].

Lemma 2.3. The following properties hold:

(i) h is an even function of z,
(ii) h(z; τ) + h(z + 1; τ) = 2√

−iτ
e

πi(z+1/2)2
τ ,

(iii) h(z; τ) + e−2πiz−πiτh(z + τ ; τ) = 2e−πi
(
z+ τ

4
)
.

Zwegers also shows in [14] how to express h, under certain specializations of variables, 
in terms of the unary theta functions ga,b, defined for a, b ∈ R and τ ∈ H by

ga,b(τ) :=
∑

ν∈a+Z

νeπiν
2τ+2πiνb.

The functions ga,b are modular forms of weight 3
2 . In particular, we have the following 

transformation properties [11,14].

Lemma 2.4. With hypotheses as above, the functions ga,b satisfy:

(i) ga+1,b(τ) = ga,b(τ),
(ii) ga,b+1(τ) = e2πiaga,b(τ),
(iii) ga,b(τ + 1) = e−πia(a+1)ga,a+b+ 1

2
(τ),

(iv) ga,b
(
− 1

τ

)
= ie2πiab(−iτ) 3

2 gb,−a(τ),
(v) g−a,−b(τ) = −ga,b(τ).

From [14], the Mordell integrals h can be expressed as period integrals of ga,b when 
z = aτ − b, and a, b ∈ (−1

2 , 
1
2 ).

Lemma 2.5. For a, b ∈ (−1
2 , 

1
2 ),

i∞∫
0

ga+ 1
2 ,b+

1
2
(z)√

−i(z + τ)
dz = −e−πia2τ+2πia

(
b+ 1

2
)
h(aτ − b; τ).
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Next we define some related functions whose (mock) modular or Jacobi transformation 
properties will be used in §4 to prove Theorem 1.1. We begin with the well-known 
modular and Jacobi forms η and ϑ (respectively), defined for τ ∈ H and z ∈ C by

η(τ) := q
1
24

∞∏
n=1

(1 − qn), ϑ(z; τ) :=
∑

n∈Z+ 1
2

eπin
2τ+2πin(z+ 1

2 ). (2.3)

The functions η and ϑ are well-known to satisfy the following properties. (See, for 
example, [10].)

Lemma 2.6. For γ =
(
a b
c d

)
∈ SL2(Z) and τ ∈ H,

η(γτ) = χ(γ)(cτ + d) 1
2 η(τ),

where for c > 0,

χ(γ) =

⎧⎨⎩ 1√
i

(
d
c

)
i(1−c)/2eπi(bd(1−c2)+c(a+d))/12 if c is odd,

1√
i

(
c
d

)
eπid/4eπi(ac(1−d2)+d(b−c))/12 if d is odd.

(2.4)

Lemma 2.7. For λ, μ ∈ Z, γ =
(
a b
c d

)
∈ SL2(Z), and (z, τ) ∈ C ×H,

(i) ϑ (z + λτ + μ; τ) = (−1)λ+μq−
λ2
2 e−2πiλzϑ(z; τ),

(ii) ϑ

(
z

cτ + d
; γτ

)
= χ3(γ)(cτ + d) 1

2 e
πicz2
cτ+d ϑ(z; τ),

(iii) ϑ(z; τ) = −iq
1
8w− 1

2

∞∏
n=1

(1 − qn)(1 − wqn−1)(1 − w−1qn).

Next we define Zwegers’ mock Jacobi form μ (see [14]), defined for τ ∈ H and u, v ∈
C (u, v /∈ Zτ + Z) by

μ(u, v; τ) := eπiu

ϑ(v; τ)
∑
n∈Z

(−1)neπi(n2+n)τ+2πinv

1 − e2πinτ+2πiu . (2.5)

The transformation properties of μ are studied via its completion μ̂ into a nonholomor-
phic Jacobi form. Precisely, from [14], we have that

μ̂(u, v; τ) := μ(u, v; τ) + i

2R(u− v; τ), (2.6)

where the nonholomorphic function R is defined by

R(u; τ) :=
∑

ν∈ 1
2+Z

{
sgn(ν) −E

(
(ν + α)

√
2y

)}
(−1)ν− 1

2 e−πiν2τ−2πiνu, (2.7)
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with y := Im(τ), α := Im(u)
Im(τ) and

E(z) := 2
z∫

0

e−πu2
du.

From [14, Proposition 1.9, Proposition 1.10, Theorem 1.11], we have the following trans-
formation properties of R and μ̂.

Lemma 2.8. With hypotheses as above, R satisfies the following transformation proper-
ties:

(i) R(u; τ + 1) = e−
πi
4 R(u; τ),

(ii) 1√
−iτ

e
πiu2

τ R

(
u

τ
;−1

τ

)
+ R(u; τ) = h(u; τ),

(iii) R(u; τ) = R(−u; τ).

Lemma 2.9. With hypotheses as above, for k, l, m, n ∈ Z and 
(
a b
c d

)
∈ SL2(Z), the function 

μ̂ satisfies the following (nonholomorphic) Jacobi transformation properties:

(i) μ̂(u + kτ + l, v + mτ + n; τ) = (−1)k+l+m+neπi(k−m)2τ+2πi(k−m)(u−v)μ̂(u, v; τ),

(ii) μ̂

(
u

cτ + d
,

v

cτ + d
; aτ + b

cτ + d

)
= χ−3 ( a b

c d

)
(cτ + d)1/2e−

πic(u−v)2
cτ+d μ̂(u, v; τ).

3. Auxiliary lemmas

In this section, we establish a number of auxiliary lemmas which will be used in §4
towards the proofs of our main results stated in §1. In order to establish the quantum 
Jacobi transformation properties of V+ and W+ in the next section, we first make precise 
infinite subsets QV and QW of Q ×Q on which V (hence V+) and W (hence W+) converge, 
respectively. Namely, we define

QV :=
{(

a
b ,

h
k

)
∈ Q×Q | a, h ∈ Z, b ∈ N, k ∈ 2N, gcd(a, b) = gcd(h, k) = 1, b | k

}
,

QW :=
{(

a
b ,

h
k

)
∈ Q×Q | a ∈ Z, b, k ∈ N, h ∈ 2Z, gcd(a, b) = gcd(h, k) = 1, b | k

}
.

Lemma 3.1. The following identities hold.

(i) If (z, τ) =
(
a
b ,

h
k

)
∈ QV , then there is a constant Ca,b,h,k such that

V(e2πiz; e2πiτ ) = V(ζab ; ζhk ) =
Ca,b,h,k∑
n=0

(−ζab ζ
h
k ; ζhk )n(−ζ−a

b ζhk ; ζhk )nζhnk(
ζhk ; ζ2h

k

)
n+1

. (3.1)
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(ii) If (z, τ) =
(
a
b ,

h
k

)
∈ QW , then there is a constant Da,b,h,k such that

W(e2πiz; eπiτ ) = W(ζab ; ζh2k) =
Da,b,h,k∑
n=0

(ζab ζh2k; ζhk )n(ζ−a
b ζh2k; ζhk )nζhnk

(−ζh2k; ζh2k)2n+1
.

Proof. The proof of (ii) is very similar to the proof of (i) and relatively straightforward, 
so for brevity we omit it, and explain only (i) here. By definition of V, we have that

V(ζab ; ζhk ) =
∞∑

n=0

(−ζab ζ
h
k ; ζhk )n(−ζ−a

b ζhk ; ζhk )nζhnk(
ζhk ; ζ2h

k

)
n+1

. (3.2)

If k is even, the denominators of the summands in (3.2) are nonzero for every term in 
the series. On the other hand, suppose that

±a

b
+ j

h

k
= m + 1

2 ∈ Z + 1
2 (3.3)

for some j ∈ N and m ∈ Z. Then the numerators of the summands in (3.2) vanish 
for sufficiently large n. Thus, it remains to be seen that such a j and m exist. Since 
(ab , 

h
k ) ∈ QV , there is some integer h′ such that hh′ ≡ −1 (mod k). Moreover, since 

b|k, we may write bb′ = k for some integer b′. We define j to be a positive integer 
which is congruent to ±ab′h′ − kh′/2 (mod k). Note that kh′/2 ∈ Z, since k is even. 
This congruence is equivalent to the congruence jh ≡ ∓ab′ + k/2 (mod k), which is 
equivalent to the existence of some integer m such that jh = ∓ab′ + k/2 + mk, which 
after some rewriting is equivalent to (3.3). �

In [9], Mortenson derived expressions directly related to V and W in terms of theta 
functions j and Appell–Lerch series m defined as follows:

j(x; q) := (x; q)∞(x−1q; q)∞(q; q)∞,

m(ρ, q, x) := 1
j(x; q)

∑
n∈Z

(−1)nq
n(n−1)

2 xn

1 − ρxqn−1 .

The functions j and m are nearly identical to the functions ϑ and μ defined in (2.3)
and (2.5) after suitable changes of variables. The next lemma follows immediately from 
the definitions of j, m and μ, and from Lemma 2.7 iii).

Lemma 3.2. The following identities hold:

(i) j(w; q) = iw
1
2 q−

1
8ϑ(z; τ),

(ii) m (w, q,−1) = iw− 1
2 q

1
8μ 

(
z + 1

2 ,
1
2 ; τ

)
.
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Using Lemma 3.2 and equations (4.23) and (4.32) in [9], we establish the following 
expressions for V+ and W+ in terms of the Jacobi ϑ-function, and Zwegers’ mock Jacobi 
form μ.

Lemma 3.3. We have that

V+(z; τ) = V+
1 (z; τ) + V+

2 (z; τ) + V+
3 (z; τ), (3.4)

and

W+(z; τ) = W+
1 (z; τ) + W+

2 (z; τ) + W+
3 (z; τ), (3.5)

where

V+
1 (z; τ) := −iμ

(
z + 1

2 ,
1
2 ; τ

)
,

V+
2 (z; τ) := −i

η(2τ)ϑ
(
z + 1

2 ; τ
)

η2(τ) μ
(
2z + 1

2 ,
1
2 ; 2τ

)
,

V+
3 (z; τ) := −iq

1
4w

η3(4τ)ϑ(z; τ)ϑ(2z + τ ; 2τ)
η3(2τ)ϑ(4z; 4τ) ,

and

W+
1 (z; τ) := 2iμ

(
z + 1

2 ,
1
2 ; τ

)
,

W+
2 (z; τ) := q

1
8w

1
2
η( τ2 )ϑ(z + τ

2 ; τ)
η2(τ) μ

(
z + 1

2 ,
1
2 ; τ

2
)
,

W+
3 (z; τ) := i

2q
1
8w

1
2
η5( τ2 )ϑ(z + τ

2 ; τ)
η4(τ)ϑ

(
z + 1

2 ; τ
2
) .

The next result (Lemma 3.4) will be used repeatedly in the next section to simplify 
various expressions and equations.

Lemma 3.4. The following are true.

(i) If (z, τ) ∈ QV , then 
ϑ
(
z + 1

2 ; τ
)

η(τ) = 0.

(ii) If (z, τ) ∈ QW , then 
ϑ
(
z + τ

2 ; τ
)

η(τ) = 0.

Proof. To prove (i), by Lemma 2.7, we have that

ϑ
(
z + 1

2 ; τ
)

η(τ) = −iq
1
12 (−w)− 1

2

∞∏ (
1 + wqn−1) (1 + w−1qn

)
. (3.6)
n=1
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By an argument similar to the argument given in the proof of Lemma 3.1, we find that 
the function in (3.6) vanishes for (z, τ) ∈ QV . The proof of (ii) follows similarly using 
Lemma 2.7 and the definition of QW . �
4. Proof of main theorems

4.1. Proof of Theorem 1.1

We first point out that equations (1.6), (1.7), and (1.9) follow directly from the defi-
nition of V+ in (1.2). Equations (1.11) and (1.12) follow directly from (1.8) and (1.10), 
respectively, using Lemma 3.4, and that η(2τ)/η(τ) = q1/24 ∏∞

n=1(1 + qn) also vanishes 
for τ = h/k arising from QV . Thus, we are left to prove (1.8), (1.10), and the analytic 
properties claimed in Theorem 1.1.

We begin with (1.10). Using the functional equation that appears immediately below 
equation (4.32) in [9], as well as Lemma 3.2, and the definition of V+ in (1.2), we find

V+ (z + τ ; τ) + w
1
2 q

3
8 + wq

1
2V+ (z; τ) = i

ϑ
(
z + 1

2 ; τ
)

ϑ (τ ; 2τ) = −q
1
4
η(2τ)
η2(τ)ϑ

(
z + 1

2 ; τ
)
.

Equation (1.10) follows after rearrangement of terms.
To prove (1.8), we begin with the expressions given for V+ in Lemma 3.3. We define 

the following completed functions:

V̂+
1 (z; τ) := −iμ̂

(
z + 1

2 ,
1
2 ; τ

)
,

V̂+
2 (z; τ) := −iμ̂

(
2z + 1

2 ,
1
2 ; 2τ

) η(2τ)
η2(τ)ϑ

(
z + 1

2 ; τ
)
,

V̂+
3 (z; τ) := V+

3 (z; τ).

Note that V̂+
3 = V+

3 because, as we shall show, V+
3 is a Jacobi form (see (4.5)). Using [14, 

Theorem 1.11 (2)], Lemma 2.6, and Lemma 2.7, after some calculation and simplification, 
we obtain the following Jacobi transformation properties, which hold for 

(
a b
c d

)
∈ Γ0(4), 

and j ∈ {1, 2, 3}:

V̂+
j

(
z

cτ + d
; aτ + b

cτ + d

)
= ψj(cτ + d) 1

2 e
−πicz2
cτ+d V̂+

j (z; τ), (4.1)

where

ψ1 = ψ1
(
a b
c d

)
:= χ−3 ( a b

c d

)
,

ψ2 = ψ2
(
a b
c d

)
:= χ−2

(
a 2b
c
2 d

)
χ
(
a b
c d

)
(−1)

d−1
2 e

πicd
4 ,

ψ3 = ψ3
(
a b
c d

)
:= χ3 ( a b

c d

)
(−1)

a−1
2 +be

(
ab
4
)
.
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A lengthy but straightforward calculation using (2.4) reveals that ψ1, ψ2, and ψ3 are 
equal for any 

(
a b
c d

)
∈ Γ0(4), so that for j ∈ {1, 2, 3} and 

(
a b
c d

)
∈ Γ0(4), we have

V̂+
j

(
z

cτ + d
; aτ + b

cτ + d

)
= ψ(cτ + d) 1

2 e
−πicz2
cτ+d V̂+

j (z; τ), (4.2)

where ψ = ψ
(
a b
c d

)
= ψ1 = ψ2 = ψ3.

Now, by definition, we have that

V̂+
1 (z; τ) = V+

1 (z; τ) + 1
2R(z; τ),

V̂+
2 (z; τ) = V+

2 (z; τ) + 1
2
ϑ(z + 1

2 ; τ)η(2τ)
η2(τ) R(2z; 2τ).

Thus, we obtain from (4.1) and the discussion following, that for 
(
a b
c d

)
∈ Γ0(4),

V+
1

(
z

cτ + d
; aτ + b

cτ + d

)
− ψ(cτ + d) 1

2 e
−πicz2
cτ+d V+

1 (z; τ)

= −1
2R

(
z

cτ + d
; aτ + b

cτ + d

)
+ 1

2ψ(cτ + d) 1
2 e

−πicz2
cτ+d R(z; τ), (4.3)

V+
2

(
z

cτ + d
; aτ + b

cτ + d

)
− ψ(cτ + d) 1

2 e
−πicz2
cτ+d V+

2 (z; τ)

=
−ϑ( z

cτ+d + 1
2 ; aτ+b

cτ+d )η(2aτ+2b
cτ+d )

2η2(aτ+b
cτ+d )

R

(
2z

cτ + d
; 2aτ + 2b

cτ + d

)

+ ψ(cτ + d) 1
2 e

−πicz2
cτ+d

ϑ(z + 1
2 ; τ)η(2τ)

2η2(τ) R(2z; 2τ), (4.4)

V+
3

(
z

cτ + d
; aτ + b

cτ + d

)
− ψ(cτ + d) 1

2 e
−πicz2
cτ+d V+

3 (z; τ) = 0. (4.5)

If we denote the right-hand sides of (4.3) and (4.4) by F1(z; τ) and F2(z; τ) respectively, 
then we have shown (for 

(
a b
c d

)
∈ Γ0(4)) that

V+
(

z

cτ + d
; aτ + b

cτ + d

)
− ψ(cτ + d) 1

2 e
−πicz2
cτ+d V+(z; τ) = F1(z; τ) + F2(z; τ). (4.6)

Next we express 
( 1 0

4 1

)
as S−1T−4S (where S :=

( 0 −1
1 0

)
, T :=

( 1 1
0 1

)
) and apply 

Lemma 2.8 repeatedly. After some lengthy but straightforward calculations, we obtain

R

(
z

4τ + 1; τ

4τ + 1

)
=

√
i

τ
(4τ + 1) 1

2 e
πiz2

(4τ+1)τ

×
(
h

(
z ; −1 − 4τ

)
+

√
−iτe

−πiz2
τ

(
h(z; τ) −R(z; τ)

))
, (4.7)
τ τ
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and

R

(
2z

4τ + 1; 2τ
4τ + 1

)
=

√
i

2τ (4τ + 1) 1
2 e

2πiz2
(4τ+1)τ

×
(
h

(
z

τ
; −1 − 4τ

2τ

)
−
√

2iτe
−2πiz2

τ

(
h(2z; 2τ) −R(2z; 2τ)

))
. (4.8)

Substituting (4.7) and (4.8) into (4.6) with 
(
a b
c d

)
=

( 1 0
4 1

)
, applying Lemma 2.6, 

Lemma 2.7, and rearranging, we obtain (1.8).
It remains to show that the “errors” on the right-hand sides of (1.12) and (1.11) extend 

to C∞ functions on R ×R and (R \ (Z + {1
2 , ±

1
8 , ±

3
8})) × (R \ {−1

4}), respectively. The 
former is clear. For the latter, we will first prove H1 is C∞ on (−1

8 , 
1
8 ) × (R \ {−1

4}), and 
then explain at the conclusion of the proof why it suffices to prove analyticity on this 
restricted interval in z. In short, this is due to the fact that by Lemma 2.3, translating 
h(z; τ) by integers or integer multiples of τ in the elliptic variable preserves analyticity 
(τ �= 0). We save further discussion on this point until the conclusion of the proof, and 
begin by applying Lemma 2.4 and Lemma 2.5, with a = 0 and b = −z, with z ∈ (−1

2 , 
1
2 ), 

to write the Mordell integral h(z; τ) as the period integral

h(z; τ) = −
i∞∫
0

g 1
2 ,−z+ 1

2
(ρ)√

−i(τ + ρ)
dρ. (4.9)

Similarly, with the substitutions a = −z and b = 4z, with z ∈ (−1
8 , 

1
8 ), and τ �→

−1−4τ
τ , we obtain

h

(
z

τ
; −1 − 4τ

τ

)
= −e−πiz2( 1+4τ

τ

)
+2πiz

(
4z+ 1

2
) i∞∫

0

g−z+ 1
2 ,4z+

1
2
(ρ)√

−i
(
ρ + −1−4τ

τ

)dρ. (4.10)

Making the change of variable ρ �→ 4 − 1
ρ , and applying Lemma 2.4 and Lemma 2.5, 

after some calculation and simplification we find that (4.10) equals

i
√
iτe

−πiz2
τ

0∫
1
4

g 1
2 ,−z+ 1

2
(ρ)√

−i(τ + ρ)
dρ. (4.11)

Finally, substituting (4.9) and (4.11) into (1.3), we find that for z ∈ (−1
8 , 

1
8 ),

H1(z; τ) = 1
2

i∞∫
1

g 1
2 ,−z+ 1

2
(ρ)dρ√

−i(τ + ρ)
. (4.12)
4
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The proof that the function in (4.12) is C∞ follows by an almost identical argument 
as given by Bringmann and the second author in [1]; note that the same integrand 
g 1

2 ,−z+ 1
2
(ρ)/

√
−i(τ + ρ) appears in [1, Proof of Theorem 1.1, p. 375]. We integrate on 

the vertical path from 1
4 to 1

4 + i∞, and on the horizontal path from 1
4 + i∞ to i∞. It is 

not difficult to show the integral vanishes on the latter path, so we are left to analyze

∞∫
0

g 1
2 ,−z+ 1

2
(1
4 + it)dt√

−i(τ + 1
4 + it)

.

For � ∈ N0, we employ the following bound pertaining to the theta function in the 
integrand, which was established in [1]:

∂	

∂z	
g 1

2 ,−z+ 1
2
(1
4 + it) � e−

π
4 t.

The argument that H1(z, τ) is C∞ on (−1
8 , 

1
8 ) × (R \ {−1

4}) now follows as in [1] by the 
Leibniz Rule.

For general z ∈ (R \ (Z + {1
2 , ±

1
8 , ±

3
8})), we use Lemma 2.3 to translate the Mordell 

integral h in the elliptic variable by integers or integer multiples of τ up to addition of 
analytic functions (τ �= 0). (See also [1, Proof of Theorem 1.1, p. 375].) More precisely, for 
z ∈ (R \ (Z + {1

2 , ±
1
8 , ±

3
8})), there is some m ∈ Z such that z +m ∈ ( j

8 , 
j+1
8 ) ⊆ (−1

2 , 
1
2 ), 

where j ∈ {−4, ±3, ±2, ±1, 0}. Repeatedly applying Lemma 2.3 (ii) relates h(z; τ) and 
h(z + m; τ) up to the addition of an analytic function, and we may proceed as with 
(4.9), using a = 0 and b = −(z + m), to re-write h(z + m; τ) as a period integral. There 
also exists an n ∈ Z (which depends on m and j) so that 4(z + m) + n ∈ (−1

2 , 
1
2 ). 

Let τ̃ := −1−4τ
τ . Using Lemma 2.3 (ii) and (iii) repeatedly again relates h 

(
z
τ ; τ̃

)
and 

h 
(
z+m
τ − n; τ̃

)
= h 

(
z
τ −mτ̃ − 4m− n; τ̃

)
up to the addition of analytic functions, and 

we may proceed as with (4.10), using a = −(z + m) and b = 4(z + m) + n, to re-write 
h 
(
z+m
τ − n; τ̃

)
as a period integral. The rest of the argument then follows as above.

4.2. Proof of Theorem 1.2

The proof of Theorem 1.2 is very similar to the proof of Theorem 1.1 given above. 
We provide a detailed sketch. Equations (1.14), (1.15), and (1.17) follow directly from 
the definition of W+ in (1.13). Properties in (1.19) and (1.20) follow directly from (1.16)
and (1.18), respectively, using Lemma 3.4, and simplifying the quotient η( τ2 )/η(τ). Equa-
tion (1.18) follows after a short calculation using [9, (4.24)], the definition of W+ in (1.13), 
and Lemma 3.2. We are thus left to prove (1.16) and the analytic properties claimed in 
Theorem 1.2.

To prove (1.16), we begin with the expressions given for W+ in Lemma 3.3, and define 
the completed functions
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Ŵ+
1 (z; τ) := 2iμ̂

(
z + 1

2 ,
1
2 ; τ

)
,

Ŵ+
2 (z; τ) := q

1
8w

1
2
η( τ2 )ϑ(z + τ

2 ; τ)
η2(τ) μ̂

(
z + 1

2 ,
1
2 ; τ

2
)
,

Ŵ+
3 (z; τ) := i

2q
1
8w

1
2
η5( τ2 )ϑ(z + τ

2 ; τ)
η4(τ)ϑ

(
z + 1

2 ; τ
2
) .

Using Lemma 2.6, Lemma 2.7, and Lemma 2.9, we find after some straightforward 
calculations and simplifications for j ∈ {1, 2, 3} that

Ŵ+
j (z; τ) + i(2τ + 1)− 1

2 e
2πiz2
2τ+1 Ŵ+

j

(
z

2τ + 1; τ

2τ + 1

)
= 0. (4.13)

Using (4.13), the decomposition given for W+ in Lemma 3.3, and the definitions of 
the functions Ŵ+

j , we find that

W+(z; τ) + i(2τ + 1)− 1
2 e

2πiz2
2τ+1 W+

(
z

2τ + 1; τ

2τ + 1

)
= E1(z; τ) + E2(z; τ), (4.14)

with“error” functions E1 and E2 defined using the Mordell integral h in (1.5) and the 
nonholomorphic function R in (2.7) (similar to the functions F1 and F2 from (4.3) and 
(4.4)). We express 

( 1 0
2 1

)
as S−1T−2S and apply Lemma 2.8 repeatedly. After some 

lengthy but straightforward calculations as in the proof of Theorem 1.1, we find that 
E1(z; τ) + E2(z; τ) = G1(z; τ) + G2(z; τ), where

G1(z; τ) := h(z; τ) + τ−
1
2 ζ3

8e
πiz2

τ h

(
−z

τ
; −1 − 2τ

τ

)
, (4.15)

G2(z; τ) :=
−iq

1
8w

1
2 η( τ2 )ϑ(z + τ

2 ; τ)
2η2(τ)

(
h(z; τ

2 ) + τ−
1
2 ζ8

√
2 e

2πiz2
τ h

(
−2z
τ

; −2 − 4τ
τ

))
.

(4.16)

This proves (1.16).
The claim that (1.20) extends to a C∞ function on R × R is clear. To prove that G1

extends to a C∞ function on the claimed subset of R ×R, we proceed as in the proof of 
Theorem 1.1. After some calculations, using Lemma 2.4 and Lemma 2.5, we re-write G1
for z ∈ (−1

4 , 
1
4 ) as the period integral

−
i∞∫
1
2

g 1
2 ,−z+ 1

2
(ρ)√

−i(τ + ρ)
dρ.

That this function is C∞ on (−1
4 , 

1
4 ) × (R \{−1

2}) follows as in the proof of Theorem 1.1. 
We extend to z ∈ R \ (Z + {1

2 , ±
1
4}) as argued in the proof of Theorem 1.1 using 

Lemma 2.3.
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4.3. Proof of Theorem 1.3

We proceed in a similar manner as Bringmann and the second author in [1, Proof of 
Theorem 1.2].

We begin with the proof of (i) in Theorem 1.3. Suppose a function f(z; τ) transforms 
in the elliptic variable as

f(z + τ ; τ) = −wq
1
2 f(z; τ) + wq

1
2 r(z; τ) (4.17)

for some function r(z; τ). By induction on m ∈ N0, it is not difficult to show that for all 
m ∈ N0

f(z + mτ ; τ) = (−1)mwmq
1
2m

2
f(z; τ) + Gm,r(z; τ),

where

Gm,r(z; τ) := (−1)m+1
m−1∑
j=0

(−1)jr(z + jτ ; τ)wm−jq
1
2 (m2−j2).

It is clear from (1.12) that for (z, τ) ∈ QV that the function V+(z; τ) satisfies (4.17)
with

r(z; τ) := −w− 1
2 q

7
8 .

If we set m = k, we thus have

V+(z + h; τ)
∣∣∣
(z,τ)=

(
a
b ,

h
k

)
∈QV

=
(
(−1)kwkq

k2
2 V+(z; τ) + Gk,r(z; τ)

) ∣∣∣
(z,τ)=

(
a
b ,

h
k

)
∈QV

.

We also deduce from (1.9) that for any h ∈ Z,

V+(z + h; τ) = (−1)hV+(z; τ).

Thus, we obtain(
(−1)h − (−1)kwkq

k2
2

)
V+(z; τ)

∣∣∣
(z,τ)=

(
a
b ,

h
k

)
∈QV

= Gk,r(z; τ)
∣∣∣
(z,τ)=

(
a
b ,

h
k

)
∈QV

.

The factor in front of V+ in this equation evaluates to −2, using the fact that k is even 
and h is odd. After some simplification, part (i) of Theorem 1.3 now follows.

The proof of part (ii) of Theorem 1.3 is very similar to the above proof of part (i), 
so for brevity’s sake, we provide a detailed sketch of proof. We first deduce that for any 
m ∈ N0 and h ∈ Z, that
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W+(z + mτ ; τ) = (−1)mwmq
m2
2 W+(z; τ) + 2

m∑
j=1

(−1)j+1wj− 1
2 q

(2j−1)(4m−2j+1)
8 ,

(4.18)

W+(z + h; τ) = (−1)hW+(z; τ). (4.19)

Substituting m = k and (z, τ) = (ab , 
h
k ) ∈ QW in (4.18), using that b|k, h is even, and k

is odd, we obtain

W+(ab + h; h
k ) = −W+(ab ; h

k ) + 2
k∑

j=1
(−1)j+1ζ

a(2j−1)
2b ζ

h(2j−1)(4k−2j+1)
8k . (4.20)

On the other hand, from (4.19) with these same substitutions for z and τ , we obtain

W+(ab + h; h
k ) = W+(ab ; h

k ). (4.21)

After substituting (4.21) into (4.20), rearranging terms, simplifying exponents that ap-
pear, and changing the index of summation, we find the expression given in part (ii) of 
Theorem 1.3.
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