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Abstract

In 2013, Lemke Oliver classified all eta-quotients which are theta functions. In this
paper, we unify the eta–theta functions by constructing mock modular forms from the
eta–theta functions with even characters, such that the shadows of these mock
modular forms are given by the eta–theta functions with odd characters. In addition,
we prove that our mock modular forms are quantum modular forms. As corollaries, we
establish simple finite hypergeometric expressions which may be used to evaluate
Eichler integrals of the odd eta–theta functions, as well as some curious algebraic
identities.
Keywords: Theta functions, Mock modular forms, Quantummodular forms

1 Introduction and statement of results
One of the most well-known modular forms of weight 1/2 is Dedekind’s η-function,
defined for τ in the upper half-planeH := {τ ∈ C | Im(τ ) > 0} by

η(τ ) := q
1
24

∞∏

n=1
(1 − qn) =

∑

m≥1

(12
m

)
q

m2
24 , (1)

where q = e(τ ), and
( ·

·
)
is the Kronecker symbol (throughout we set e(u) := e2π iu). More

generally, eta-products, functions of the form

c∏

j=1
η(ajτ )bj , (2)

where aj, bj , and c are positive integers, have been of interest not only within the classical
theory of modular forms, but also in connection to the representation theory of finite
groups. Conway and Norton [8] showed that many character generating functions for the
“Monster” group M, the largest of the finite sporadic simple groups, could be realized
as eta-quotients, which are of the same form as the functions in (2), but allow negative
integer exponents bj . Mason [23] similarly exhibited many character generating func-
tions for the Mathieu group M24 as multiplicative eta-products, meaning their q-series
have multiplicative coefficients, as seen in (1) for example. This relationship to character
generating functions in part motivated Dummit, Kisilevsky and McKay [9] to classify all
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multiplicative eta-products. Later, Martin [22] classified all multiplicative integer weight
eta-quotients.
In addition tobeing a simple exampleof amultiplicativeq-series, the right-most function

in (1) is also an example of a theta function, which is of the form

θχ (τ ) :=
∑

n
χ (n)nνqn, (3)

where χ is an even (resp. odd) Dirichlet character, and ν equals 0 (resp. 1). The sum in (3)
is taken over n ∈ Z or n ∈ N, depending on whether or not χ is trivial. It is well-known
that such functions are ordinary modular forms of weight 1/2 + ν. While (1) shows an
eta-quotient which is also a theta function, it is not true in general that all multiplicative
eta-quotients are also theta functions.This questionwas studiedbyLemkeOliver [24],who
classified all eta-quotients which are also theta functions; in particular, his classification
gives six odd eta–theta functions Em, and eighteen even eta–theta functions en (some of
which are twists by certain principal characters). By “odd (resp. even) eta–theta function”,
we mean an eta-quotient which is also a theta function with odd (resp. even) character.
See Sect. 2.1 for more on these functions.
Modular theta functions also naturally emerge in the theory of harmonic Maass forms

(see Sect. 2.3), which are certain non-holomorphic functions that transform like modular
forms. A harmonic Maass form M̂, as originally defined by Bruinier and Funke [5], natu-
rally decomposes into two parts as M̂ = M + M−, where M is the holomorphic part of
M̂, andM− is the non-holomorphic part of M̂. For example, when viewed as a function of
τ , we now know that the function

q− 1
24

∑

n≥0

qn2

(−q; q)2n
+ 2i

√
3

∫ i∞

−τ

∑
n∈Z

(
n + 1

6
)
e3π iz(n+ 1

6 )
2

√−i(z + τ )
dz, (4)

where (a; q)n := ∏n−1
j=0 (1− aqj), is a harmonic Maass form (see the work of Zwegers [31],

andWatson [27]). Its holomorphic part, namely the q-hypergeometric series in (4), is one
of Ramanujan’s originalmock theta functions, certain curious q-series whose exact modu-
lar properties were unknown for almost a century. Beautifully, all of Ramanujan’s original
mock theta functions turn out to be examples of holomorphic parts of harmonic Maass
forms [31], and we now define after Zagier [28] amock modular form to be any holomor-
phic part of a harmonic Maass form. Mock modular forms come naturally equipped with
a shadow, a certain modular cusp form related via a differential operator, which we for-
mally define in Sect. 2.3. In the example given above in (4), it turns out that the shadow of
Ramanujan’s q-hypergeometricmock theta function is essentially themodular theta func-
tion given in the numerator of the integral appearing there (up to a simple multiplicative
factor).
As mentioned above, character generating functions for M24 appear as multiplicative

eta-products. We now also know that there is a rich Moonshine phenomenon surround-
ing mock modular forms. Eguchi, Ooguri and Tachikawa [11], in analogy to the original
Moonshine conjectures, observed that certain characters for the Mathieu group M24
appeared to be related to mock modular forms. Their work was later generalized and
greatly extended by Cheng, Duncan, and Harvey [7], who developed an “umbral Moon-
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shine” theory. Their umbral Moonshine conjectures were recently proved by Duncan,
Griffin, and Ono [10].
These connections serve as motivation for the first set of results in this paper. In Sect.

3, we unify the eta–theta functions by constructing mock modular forms which encode
them in the following ways. We define functions Vmn using the even eta–theta functions
en, and in Theorem 1.1, we prove that these functions Vmn are mock modular forms, with
the additional property that their shadows are given by the odd eta–theta functions Em.
To describe these results, we introduce some notation. The functions Vmn are indexed

by pairs (m, n) wherem ∈ T ′ := {1, 2, 3, 4, 4′, 4′′, 5, 6} and n ∈ N, and the admissible values
for n are dependent onm. Throughout, we will call a pair (m, n) admissible if it is used to
index one of our functionsVmn. In total, there are 59 admissible pairs (m, n) wherem ∈ T ′.
When we restrict m ∈ T := {1, 2, 3, 4, 5, 6}, a particular subset which we also consider,
there are a total of 43 admissible pairs (m, n).We provide a complete list of these functions
in the Appendix. The groups Amn, integers k (mn)

γmn , 	(mn)
γmn , r(mn)

γmn , and s(mn)
γmn , and roots of unity

ε
(m)
γmn appearing in Theorem 1.1 below and throughout are defined in Sect. 3; the root of
unity ψ is defined in Lemma 2.1, and the constants cm are defined in Sect. 5.

Theorem 1.1 For any admissible pair (m, n) with m ∈ T ′, the functions Vmn are mock
modular forms of weight 1/2 with respect to the congruence subgroups Amn. Moreover, for
m ∈ T, the shadow of Vmn is given by a constant multiple of the odd eta–theta function
Em

( 2τ
c2m

)
. In particular, the functions Vmn,m ∈ T ′, may be completed to form harmonic

Maass forms V̂mn of weight 1/2 on Amn, which satisfy for all γmn =
(
amn bmn
cmn dmn

)
∈ Amn, and

τ ∈ H,

V̂mn(γmnτ ) = ψ(γmn)−3(−1)k
(mn)
γmn +	

(mn)
γmn +r(mn)

γmn +s(mn)
γmn ε(m)

γmn (cmnτ + dmn)
1
2 V̂mn(τ ).

Because there are infinitely many mock modular forms with a given shadow, we are
additionally motivated to construct our functions Vmn so that they are in some sense
canonical. One way of doing this is by utilizing the even eta–theta functions en in the con-
struction of these functions, as we have already mentioned. Further, we show in Theorem
1.2 that our mockmodular formsVmn are also quantummodular forms, a property that is
not necessarily true of all mock modular forms. A quantum modular form, as defined by
Zagier [30] in 2010, is a complex function defined on an appropriate subset of the ratio-
nal numbers, as opposed to the upper half-plane, which transforms like a modular form,
up to the addition of an error function that is suitably continuous or analytic in R. (See
Sect. 5 for more details.) The theory of quantummodular forms is in its beginning stages;
constructing explicit examples of these functions remains of interest, as does answering
the question of how quantum modular forms may arise from mock modular forms (see
the recent articles [3,6,13], for example).
The appropriate sets Smn of rational numbers pertaining to the quantum modularity of

the forms Vmn are defined in Sect. 4. The groups Gmn and constants 	m, am, bm, cm and
κmn appearing below are defined in Sect. 5. Here and throughout, the numbers 	mn are
defined to equal 	m or 2, depending on whether or not n = 1. For N ∈ N, we define
ζN := e(1/N ), and for r ∈ Z, we letMr :=

( 1 0
r 1

)
.
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Theorem 1.2 For any admissible pair (m, n)with m ∈ T, the functions Vmn are quantum
modular forms of weight 1/2 on the sets Smn\

{ −1
	mn

}
for the groups Gmn. In particular, the

following are true.

(i) For all x ∈ H ∪ Smn\
{−1

2
}
, we have that

Vmn(x) + ζ
	m
4 (2x + 1)−

1
2Vmn (M2x) = − i

cm

∫ i∞
1
2

Em
( 2u
c2m

)

√−i(u + x)
du.

(ii) For n = 1 and m ∈ {2, 4, 6}, for all x ∈ H ∪ Smn\ {−1}, we also have that

Vm1(x) − ζ−1
8 (x + 1)−

1
2Vm1 (M1x) = − i

cm

∫ i∞

1

Em
( 2u
c2m

)

√−i(u + x)
du. (5)

(iii) For all x ∈ H ∪ Smn, we have that

Vmn(x) − ζ κmn
am Vmn(x + κmnbm) = 0. (6)

One interesting feature of Theorem 1.2 is that it leads to simple, yet non-obvious, closed
expressions for the Eichler integrals of the odd eta–theta functions Em appearing on the
right hand side of (5). Moreover, (6) leads to curious algebraic identities. To describe
these results, we define the truncated q-hypergeometric series for integers h ∈ Z, k ∈ N

(gcd(h, k) = 1) by

Fh,k (z1, z2) :=
k−1∑

n=0

(−ζ h
2k ; ζ

h
2k )nζ

n(n+1)h
4k

(z1; ζ h
2k )n+1(z2; ζ h

2k )n+1
. (7)

The additional constants dm,Hm = Hm(h, k), and Km = Km(h, k) appearing in Corollary
1.3 below are defined in Sect. 6. From Theorem 1.2, we have the following corollary.

Corollary 1.3 The Eichler integrals of the odd eta–theta functions Em satisfy the following
identities.

(i) Let m ∈ {1, 2, 3, 5, 6}, and h
k ∈ Sm1\{−1

	m
}. Then we have that

−i
cm

∫ i∞
1

	m

Em( 2zc2m )√
−i

(
z + h

k

)dz = i1+	mζ
2dmh
amcmkFh,k

(
−i	m−3ζ h

cmk ,−i3−	mζ
dmh
amk

)

− ζ
−5	m
8 ζ

2dmH	m
amcmK	m

(
	mh
k + 1

)− 1
2 FH	m ,K	m

(
−i	m−3ζ

H	m
cmK	m

,−i3−	mζ
dmH	m
amK	m

)
.

(8)

Moreover, we have for m ∈ {1, 2, 5} that

Fh,k (−i	m−3ζ h
cmk ,−i3−	mζ

dmh
amk ) + Fh,k (i	m−3ζ h

cmk , i
3−	mζ

dmh
amk ) = 0. (9)
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(ii) Let h
k ∈ S41\{−1}. Then we have that

−i
24

∫ i∞

1

E4(z/288)√
−i

(
z + h

k

)dz = −ζ 11h
288kFh,k

(
ζ h
24k , ζ

11h
24k

)
− ζ 35h

288kFh,k
(
ζ 5h
24k , ζ

7h
24k

)

+ ζ−1
8

(
h
k +1

)− 1
2
(
ζ
11H1
288K1

FH1 ,K1

(
ζ
H1
24K1

, ζ 11H1
24K1

)
+ ζ

35H1
288K1

FH1 ,K1

(
ζ
5H1
24K1

, ζ 7H1
24K1

))
.

(10)

Moreover, we have that

Fh,k (ζ h
24k , ζ

11h
24k ) + Fh,k (ζ 5h

24k , ζ
7h
24k ) + Fh,k (−ζ h

24k ,−ζ 11h
24k )

+ Fh,k (−ζ 5h
24k ,−ζ 7h

24k ) = 0. (11)

Remark The analogous result to (9) also holds for m ∈ {3, 6}, however, the identity for
thesem is trivial.

We illustrate Corollary 1.3 in the following example.

Example Let h/k = 1/3 ∈ S11\{−1
2 }. By Corollary 1.3, the Eichler integral of the eta-

quotient E1 appearing in (8) may be evaluated exactly as

−i
8

∫ i∞

1/2

E1(z/32)dz√
−i(z + 1

3 )
= ζ−7

32

2∑

n=0

(−ζ6; ζ6)nζ n(n+1)
12

(iζ24; ζ6)n+1(−iζ8; ζ6)n+1

− ( 3
5
) 1
2 ζ−37

160

4∑

n=0

(−ζ10; ζ10)nζ n(n+1)
20

(iζ40; ζ10)n+1(−iζ 3
40; ζ10)n+1

≈ .05461 + .00825i.

Moreover, we have the following curious algebraic identity from (9):

2∑

n=0

(−ζ6; ζ6)nζ n(n+1)
12

(iζ24; ζ6)n+1(−iζ8; ζ6)n+1
+

2∑

n=0

(−ζ6; ζ6)nζ n(n+1)
12

(−iζ24; ζ6)n+1(iζ8; ζ6)n+1
= 0. (12)

While (12)may appear elementary,wepoint out that termby term, the two sumsappearing
are quite different. That is, let

a(n) := (−ζ6; ζ6)nζ n(n+1)
12

(iζ24; ζ6)n+1(−iζ8; ζ6)n+1
, b(n) := (−ζ6; ζ6)nζ n(n+1)

12
(−iζ24; ζ6)n+1(iζ8; ζ6)n+1

.

The following table gives the values of each summand appearing in (12); other than the
fact that the last summands satisfy a(2) = −b(2), term-by-term cancellation in (12) is not
apparent. Other examples which we numerically computed behaved similarly.

n a(n) b(n)
0 ≈ 0.713123 −0.411722i ≈ 0.384953 − 0.222253i
1 ≈ −2.38616 +1.37765i ≈ 1.28808 − 0.743673i
2 ≈ 1.22474 ≈ −1.22474
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We point out that it is of interest to compare both the statement and proof of Corollary
1.3 to work of Rolen and Schneider [26], who established finite evaluations of a particular
Eichler integral using different methods than those used here.
Given that our quantum modular forms Vmn satisfy the stronger property that their

appropriate transformation properties hold on both a subset of Q and the upper half-
plane H, it is natural to ask if the functions Vmn also extend into the lower half-plane
H

− := {z ∈ C | Im(z) < 0}. Indeed, in Sect. 2.1, we define form ∈ T the functions Ẽm(z)
for z ∈ H

−. Upon making the change of variable z = −2τ/c2m, where τ ∈ H (and hence
z ∈ H

−), we show in Proposition 1.4 that as τ → x ∈ Smn ⊆ Q from the upper half-plane,
and hence as z → −2x/c2m ∈ Q from the lower half-plane, the functions Ẽm

(−2x/c2m
)
are

quantummodular forms which transform exactly as our functions Vmn(x) do in Theorem
1.2, up to multiplication by a constant which can be explicitly determined.

Proposition 1.4 For m ∈ T, the functions Ẽm are quantum modular forms of weight
1/2. In particular, for any x ∈ Smn, up to multiplication by a constant, the functions
Ẽm

(−2x/c2m
)
satisfy the transformation laws given inTheorem1.2 for the functionsVmn(x).

Series similar to the functions Ẽm defined in (16) which instead arise from ordinary
integer weight cusp forms were studied originally by Eichler (and are also often referred
to as “Eichler integrals”), and were shown to play fundamental roles within the theory
of integer weight modular forms. In the present setting, the modular objects Em related
to the series Ẽm are not of integral weight, and many aspects of Eichler’s theory become
complicated. Nevertheless, in their fundamental work [21], Lawrence and Zagier success-
fully consider Eichler’s theory in the half integer weight setting; moreover, their work led
to some of the first examples of quantum modular forms. The functions Ẽm may also be
viewed as partial theta functions, which as series are similar to ordinary modular theta
functions, but which are not modular in general [1]. Related results on quantummodular
forms similar to those given in Proposition 1.4 may be found in [4,12,30] among other
places; we follow their methods to prove Proposition 1.4.

2 Preliminaries for Theorems 1.1 and 1.2
In this section we review previous work of Lemke Oliver [24], Zwegers [32], and the third
author [20], and make some preparations for our proofs of Theorems 1.1 and 1.2.

2.1 Work of Lemke Oliver on eta–theta functions

We begin with the Dedkind eta-function (1), whose well-known weight 1/2 modular
transformation properties are summarized in the following lemma.

Lemma 2.1 For all γ = ( a b
c d

) ∈ SL2(Z) and τ ∈ H, we have that

η (γ τ ) = ψ (γ ) (cτ + d)
1
2 η(τ ), (13)

whereψ (γ ) is a 24th root of unity, which can be given explicitly in terms of Dedekind sums
[25]. In particular, we have that

η

(−1
τ

)
= √−iτ η(τ ).
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In recent work, Lemke Oliver [24] proves that there are only eighteen weight 1/2 eta-
quotients that are also theta functions or linear combinations of theta functions (with
even character) including twists by certain principal characters. Of these, 13 are unique
up to a change of variable τ �→ kτ ; we list these as1

e1(τ ) = η(τ )2

η(2τ )
=

∑

n∈Z

(
1 − 2

(n
2

)2)
qn

2 =
∑

n∈Z
(−1)nqn

2
,

e2(τ ) = η(2τ )5

η(τ )2η(4τ )2
=

∑

n∈Z
qn

2
,

e3(τ ) = η(24τ ) =
∑

n≥1

(
12
n

)
qn

2
,

e4(τ ) = η(48τ )η(72τ )2

η(24τ )η(144τ )
=

∑

n≥1

(n
6

)2
qn

2
,

e5(τ ) = η(8τ )η(32τ )
η(16τ )

=
∑

n≥1

(
2
n

)
qn

2
,

e6(τ ) = η(16τ )2

η(8τ )
=

∑

n≥1

(n
2

)2
qn

2
,

e7(τ ) = η(3τ )η(18τ )2

η(6τ )η(9τ )
=

∑

n≥1

(
2

(n
6

)2 −
(n
3

)2)
qn

2
,

e8(τ ) = η(6τ )2η(9τ )η(36τ )
η(3τ )η(12τ )η(18τ )

=
∑

n≥1

(n
3

)2
qn

2
,

e9(τ ) = η(48τ )3

η(24τ )η(96τ )
=

∑

n≥1

(
24
n

)
qn

2
,

e10(τ ) = η(24τ )η(96τ )η(144τ )5

η(48τ )2η(72τ )2η(288τ )2
=

∑

n≥1

(
18
n

)
qn

2
,

e11(τ ) = η(τ )η(4τ )η(6τ )2

η(2τ )η(3τ )η(12τ )
=

∑

n∈Z

(
1 − 3

2

(n
3

)2)
qn

2
,

e12(τ ) = η(2τ )2η(3τ )
η(τ )η(6τ )

=
∑

n∈Z

(
1 − 2

(n
2

)2− 3
2

(n
3

)2+3
(n
6

)2)
qn

2
,

e13(τ ) = η(8τ )2η(48τ )
η(16τ )η(24τ )

=
∑

n≥1

(
3

(n
6

)2 − 2
(n
2

)2)
qn

2
.

(14)

LemkeOliver establishes a similar list for eta-quotients of weight 3/2 (with odd character)
that are theta functions or linear combinations of theta functions. He finds the following
six functions:

1Our ordering here differs from Lemke Oliver’s.
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E1(τ ) = η(8τ )3 =
∑

n≥1

(−4
n

)
nqn

2
,

E2(τ ) = η(16τ )9

η(8τ )3η(32τ )3
=

∑

n≥1

(−2
n

)
nqn

2
,

E3(τ ) = η(3τ )2η(12τ )2

η(6τ )
=

∑

n≥1

(n
3

)
nqn

2
,

E4(τ ) = η(48τ )13

η(24τ )5η(96τ )5
=

∑

n≥1

(−6
n

)
nqn

2
,

E5(τ ) = η(24τ )5

η(48τ )2
=

∑

n≥1

( n
12

)
nqn

2
,

E6(τ ) = η(6τ )5

η(3τ )2
=

∑

n≥1

(
2

( n
12

)
−

(n
3

))
nqn

2
.

(15)

We also define the following functions for z ∈ H
−,

Ẽ1(z) =
∑

n≥1

(−4
n

)
e−2π izn2 , Ẽ4(z) =

∑

n≥1

(−6
n

)
e−2π izn2 ,

Ẽ2(z) =
∑

n≥1

(−2
n

)
e−2π izn2 , Ẽ5(z) =

∑

n≥1

( n
12

)
e−2π izn2 ,

Ẽ3(z) =
∑

n≥1

(n
3

)
e−2π izn2 , Ẽ6(z) =

∑

n≥1

(
2

( n
12

)
−

(n
3

))
e−2π izn2 .

(16)

Although these functions are not modular forms, as series, their relationship to the mod-
ular eta–theta functions Em is apparent. As discussed in Sect. 1, these functions may
be viewed as formal Eichler integrals of the modular eta–theta functions Em, or, as
partial theta functions. Connections between these types of functions and mock mod-
ular and quantum modular forms have been explored in a number of works, including
[4,12,13,19,29,30].

2.2 Work of Zwegers onmock theta functions related to unary theta functions

Zwegers [32] provides a mechanism for constructing mock theta functions with shadow
related to a given unary theta function of weight 3/2. These mock theta functions (which
we discuss further in this context in Sect. 2.3) feature the weight 1/2 theta functions

ϑ(v; τ ) :=
∑

n∈Z
e2π i(n+ 1

2 )(v+ 1
2 )q

1
2 (n+ 1

2 )
2
.

It is well-known that these theta functions may be written as a Jacobi triple product

ϑ(v; τ ) = −iq
1
8 e−π iv

∏

n≥1
(1 − qn)(1 − e2π ivqn−1)(1 − e−2π ivqn). (17)

We note that ϑ(v; τ ) also satisfies the explicit modularity properties described in the
following lemma.

Lemma 2.2 [25, (80.31) and (80.8)] For λ,μ ∈ Z, γ = ( a b
c d

) ∈ SL2(Z), z ∈ C, and τ ∈ H,
we have that
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ϑ(z + λτ + μ; τ ) = (−1)λ+μq− λ2
2 e−2π iλzϑ(z; τ ), (18)

ϑ

(
z

cτ + d
; γ τ

)
= ψ3 (γ ) (cτ + d)

1
2 e

π icz2
cτ+d ϑ(z; τ ). (19)

In particular, we have that

ϑ

(
z
τ
;−1

τ

)
= −i

√−iτe
π iz2

τ ϑ (z; τ ) .

Now for τ ∈ H and u, v ∈ C\(Zτ + Z), Zwegers defines

μ(u, v; τ ) := eπ iu

ϑ(v; τ )
∑

n∈Z

(−1)ne2π invq
n(n+1)

2

1 − e2π iuqn
. (20)

Zwegers also defines for u ∈ C and τ ∈ H the Mordell integral h by

h(u) = h(u; τ ) :=
∫

R

eπ iτx2−2πux

cosh πx
dx. (21)

We will make use of the following properties of μ.

Lemma 2.3 (Zwegers, Prop. 1.4 and 1.5 of [32]) Let μ(u, v) := μ(u, v; τ ) and h(u; τ ) be
defined as in (2.2) and (2.2). Then we have

(1) μ(u + 1, v) = −μ(u, v),
(2) μ(u, v + 1) = −μ(u, v),
(3) μ(−u,−v) = μ(u, v),
(4) μ(u+ z, v+ z)−μ(u, v) = 1

2π i
ϑ ′(0)ϑ(u+v+z)ϑ(z)

ϑ(u)ϑ(v)ϑ(u+z)ϑ(v+z) , for u, v, u+ z, v+ z /∈ Zτ +Z, and
the modular transformation properties,

(5) μ(u, v; τ + 1) = e− π i
4 μ(u, v; τ ),

(6) 1√−iτ e
π i(u−v)2/τμ

(u
τ
, v

τ
;− 1

τ

) + μ(u, v; τ ) = 1
2i h(u − v; τ ).

Additionally, we will use the following theorem of the third author2 [20], relating a
certain specialization of μ(u, v; τ ) to a universal mock theta function.

Theorem 2.4 (Kang [20]) If α ∈ C such that α /∈ 1
2Zτ + 1

2Z, then

μ
(
2α,

τ

2
; τ

)
= iq

1
8 g2(e(α); q

1
2 ) − e(−α)q

1
8

η(τ )4

η( τ
2 )2ϑ(2α; τ )

,

where g2 is the universal mock theta function defined by

g2(z; q) :=
∞∑

n=0

(−q)nqn(n+1)/2

(z; q)n+1(z−1q; q)n+1
.

Remark We note that g2 is called a universal mock theta function because it has been
observed by Hickerson [16,17], and Gordon and McIntosh [15] that all of Ramanujan’s
original mock theta functions can be written in terms of g2 and another universal mock
theta function, g3.

2We have rewritten this formula to account for our definition of ϑ andμ, which differs from [20]. In particular, writing
ϑK and μK to indicate the notation in [20], we have that ϑ = −iϑK and μ = iμK .
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The function μ is completed by defining the real-analytic function

R(u; τ ) :=
∑

ν∈ 1
2+Z

(
sgn(ν) − 2

∫ (ν+a)
√

2y

0
e−π t2dt

)
(−1)ν− 1

2 e−π iν2τ−2π iνu,

with y = Im(τ ) and a = Im(u)
Im(τ ) . For τ ∈ H and u, v ∈ C\(Zτ + Z), Zwegers defines

μ̂(u, v; τ ) := μ(u, v; τ ) + i
2
R(u − v; τ ). (22)

The following explicit transformation properties show that μ̂ transforms like a two-
variable (non-holomorphic) Jacobi form of weight 1/2.

Lemma 2.5 (Zwegers, Prop. 1.11(1,2) of [32]) Let μ̂(u, v; τ ) be defined as in (2.2). Then

(1) μ̂(u + kτ + l, v + mτ + n; τ ) = (−1)k+l+m+neπ i(k−m)2τ+2π i(k−m)(u−v)μ̂(u, v; τ ), for
k, l, m, n ∈ Z, and

(2) μ̂
(

u
cτ+d ,

v
cτ+d ;

aτ+b
cτ+d

)
= v(γ )−3(cτ +d)

1
2 e−π ic(u−v)2/(cτ+d)μ̂(u, v; τ ), for γ = ( a b

c d
) ∈

SL2(Z), with v(γ ) defined as in (13).

Aswe shall see in Theorem2.7, these completions are related to the unary theta function
defined for a, b ∈ R and τ ∈ H by

ga,b(τ ) :=
∑

n∈Z
(n + a)e2π ib(n+a)q

(n+a)2
2 . (23)

The following transformation properties show, in particular, that ga,b is a modular form
of weight 3/2 when a and b are rational.

Lemma 2.6 (Zwegers, Prop. 1.15 of [32]) The function ga,b satisfies the following:

(1) ga+1,b(τ ) = ga,b(τ ),
(2) ga,b+1(τ ) = e2π iaga,b(τ ),
(3) g−a,−b(τ ) = −ga,b(τ ),
(4) ga,b(τ + 1) = e−π ia(a+1)ga,a+b+ 1

2
(τ ),

(5) ga,b(− 1
τ
) = ie2π iab(−iτ )3/2gb,−a(τ ).

The unary theta function ga,b is related to both R and h by the following theorem.

Theorem 2.7 (Zwegers, Thm. 1.16 of [32]) For τ ∈ H, we have the following two results.
When a ∈ (− 1

2 ,
1
2 ) and b ∈ R,

∫ i∞

−τ

ga+ 1
2 ,b+ 1

2
(z)

√−i(z + τ )
dz = −e2π ia(b+

1
2 )q− a2

2 R(aτ − b; τ ). (24)

Also, when a, b ∈ (− 1
2 ,

1
2 ),

∫ i∞

0

ga+ 1
2 ,b+ 1

2
(z)

√−i(z + τ )
dz = −e2π ia(b+

1
2 )q− a2

2 h(aτ − b; τ ). (25)

We extend Theorem 2.7 in the following result, which we will use in our proof of
Theorem 1.2.
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Lemma 2.8 Let τ ∈ H.

(i) For b ∈ R\ 1
2Z,

∫ i∞

−τ

g1,b+ 1
2
(z)

√−i(z + τ )
dz = −ie

(
−τ

8
+ b

2

)
R

(τ

2
− b; τ

)
+ i.

(ii) For b ∈ (− 1
2 ,

1
2 ) \ {0},

∫ i∞

0

g1,b+ 1
2
(z)

√−i(z + τ )
dz = −ie

(
−τ

8
+ b

2

)
h

(τ

2
− b; τ

)
+ i.

(iii) For a ∈ (− 1
2 ,

1
2 ) \ {0},

∫ i∞

0

ga+1/2,1(z)√−i(z + τ )
dz = −e

(
−a2

2
τ + a

)
h

(
aτ − 1

2
; τ

)
+ e(a)√−iτ

.

Proof of Lemma 2.8 If b ∈ R\ 1
2Z, we have that g1,b+ 1

2
(z) = O

(
e−π Im(z)

)
. If a ∈

(−1/2, 1/2)\{0}, we have that ga+ 1
2 ,1

(z) = O
(
e−πv20Im(z)

)
for some v0 > 0 as Im(z) → ∞.

These facts justify the convergence of the integrals in Lemma 2.8.
The proof of (2.7) in [32] yields that the integral on the left hand side of i) in Lemma 2.8

equals

− ie
(

−τ

8
+ b

2

) ∑

v∈ 1
2+Z

⎛

⎝sgn
(
v + 1

2

)
− 2

∫ (
v+ 1

2

)√
2Im(τ )

0
e−πu2du

⎞

⎠

× (−1)v−
1
2 e

(
−v2τ

2
− v

(τ

2
− b

))
. (26)

Now for all v ∈ ( 12 + Z)\{− 1
2 }, we have that sgn

(
v + 1

2
) = sgn(v). For v = − 1

2 , we
have that 0 = sgn

(− 1
2 + 1

2
) = sgn

(− 1
2
) + 1. Making these substitutions into (26) and

simplifying proves part (i) of Lemma 2.8.
Part (ii) and part (iii) of Lemma 2.8 now follow as argued in Remark 1.20 in [32] by using

part (i) of Lemma 2.8 above (rather than (2.7)) where necessary. �

In the following section, we review the theory of harmonic Maass forms, and its con-
nection to μ̂.

2.3 Harmonic Maass forms of weight 1/2, and period andMordell integrals

Following Bruinier and Funke [5], a harmonic Maass form f̂ : H → C is a non-
holomorphic extension of a classical modular form. It is a smooth function such that
for a weight κ ∈ 1

2Z, if � ⊆ SL2(Z) and χ is a Dirichlet character modulo N , then for all
γ = ( a b

c d
) ∈ � and τ ∈ H we have f̂ (γ τ ) = χ (d)(cτ + d)κ f̂ (τ ). Moreover, f̂ must vanish

under the weight κ Laplacian operator defined, for τ = x + iy, by

�κ := −y2
(

∂2

∂x2
+ ∂2

∂y2

)
+ iκy

(
∂

∂x
+ i

∂

∂y

)
.

Additionally, f̂ must have at most linear exponential growth at all cusps.
The Fourier series of a harmonic Maass form f̂ of weight κ naturally decomposes as the

sum of a holomorphic and a non-holomorphic part. We refer to the holomorphic part f
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as a mock modular form of weight κ after Zagier [28]. Moreover, a harmonic Maass form
f̂ of weight κ is mapped to a classical modular form of weight 2 − κ by the differential
operator

ξκ := 2iyκ · ∂

∂τ
.

The image of f̂ under ξκ is called the shadow of f . In the special case where κ ∈ {1/2, 3/2}
and the shadow of f is a unary theta function, we refer to f as a mock theta function.
We next show that certain specializations of the function μ are essentially mock theta

functions with shadows related to ga,b. Similar results are known, however in this paper
we require and thus establish the precise statement given in Proposition 2.8. To state it,
we define for a function g : H → C its complement

gc(τ ) := g(−τ ).

For τ ∈ H, we define for a, b ∈ R and u, v ∈ C\(Zτ + Z) the function

M̂a,b(τ ) := −√
2e2π ia

(
b+ 1

2

)

q− a2
2 μ̂(u, v; τ ). (27)

We denote the holomorphic part of M̂a,b by Ma,b, that is, Ma,b(τ ) := −√
2e2π ia(b+ 1

2 )

q− a2
2 μ(u, v; τ ).

Proposition 2.9 Let τ ∈ H, and u, v ∈ C\(Zτ + Z). If u − v = aτ − b for some a, b ∈ R,
then the function M̂a,b(τ ) satisfies

(i) ξ 1
2

(
M̂a,b(τ )

) = gca+ 1
2 ,b+ 1

2
(τ ),

(ii) � 1
2
(M̂a,b(τ )) = 0.

Remark Part (ii) of Proposition 2.9 together with the transformation laws established in
Lemma 2.5 show that M̂a,b is essentially a harmonicMaass form of weight 1/2 for suitable
v, a, and b; we illustrate this more precisely in the proof of Theorem 1.1.

Proof Here and throughout, we write τ = x + iy. We begin by establishing part (i). We
have that

ξ 1
2

(
M̂a,b(τ )

) = ξ 1
2

(
−√

2e2π ia
(
b+ 1

2

)

q− a2
2 μ(u, v; τ )

−√
2e2π ia

(
b+ 1

2

)

q− a2
2 · i

2
R(aτ − b; τ )

)

= 2iy
1
2

∂

∂τ

(
−√

2e2π ia
(
b+ 1

2

)

q− a2
2 · i

2
R(aτ − b; τ )

)

= −√
2y

1
2 e−2π ia

(
b+ 1

2

)

q− a2
2

∂

∂τ
R(aτ − b; τ ). (28)

It is shown in [32, (1.5)] that

∂

∂τ
R(aτ − b; τ ) = − i√

2y
e−2πa2y

∑

n∈Z
(−1)n

(
n + a + 1

2
)
e−π i(n+ 1

2 )
2xe−π (n+ 1

2 )
2y

× e−2π i(n+ 1
2 )(ax−b)e−2π (n+ 1

2 )ay. (29)
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Taking the conjugate of (29) and q−a2/2, we find that (28) becomes

= −ie−2π ia(b+ 1
2 )q

a2
2

∑

n∈Z
(−1)n

(
n + a + 1

2
)
q

1
2 (n+ 1

2 )
2
q(n+ 1

2 )ae−2π i(n+ 1
2 )b

=
∑

n∈Z

(
n + a + 1

2
)
q

1
2 (n+a+ 1

2 )
2
e−2π i(n+a+ 1

2 )(b+ 1
2 ) = ga+ 1

2 ,−b− 1
2
(τ ).

Using the definition of ga+ 1
2 ,−b− 1

2
(τ ), it is not difficult to show that

ga+ 1
2 ,−b− 1

2
(τ ) = ga+ 1

2 ,b+ 1
2
(−τ ) = gca+ 1

2 ,b+ 1
2
(τ ). (30)

This proves part (i).
To prove part (ii), we use the fact that the weight 1/2 Laplacian operator factors as

� 1
2

= −ξ 3
2
ξ 1
2
. The result follows by applying−ξ 3

2
to the expression given in part (i) of the

Proposition, using (30). �

2.4 Converting the setting of Lemke Oliver to the notation of Zwegers

Wenow express the eta–theta functions from (14) and (15) in terms of the theta functions
ϑ(v; τ ) and ga,b(τ ). We first observe that we can convert the sums over positive integers
in the definitions of the functions Em into sums over all integers, and then write the Em in
terms of the functions ga,b. For example, we see from the definition of ga,b(τ ) in (2.2) that

4g 1
4 ,0

(32τ ) = 4
∑

n∈Z

(
n + 1

4

)
q16(n+ 1

4 )
2 =

∑

n∈Z
(4n + 1) q(4n+1)2 = E1(τ ).

By similar methods we find the following result.

Lemma 2.10 For τ ∈ H, we have that

E1(τ ) = 4g 1
4 ,0

(32τ ) =
∑

n∈Z
(4n + 1)q(4n+1)2 ,

E2(τ ) = 4e
−π i
4 g 1

4 ,
1
2
(32τ ) =

∑

n∈Z
(−1)n(4n + 1)q(4n+1)2 ,

E3(τ ) = 3g 1
3 ,0

(18τ ) =
∑

n∈Z
(3n + 1)q(3n+1)2 ,

E4(τ ) = 12e
−π i
12 g 1

12 ,
1
2
(288τ ) + 12e

−5π i
12 g 5

12 ,
1
2
(288τ ) (31)

=
∑

n∈Z
(−1)n(12n + 1)q(12n+1)2 +

∑

n∈Z
(−1)n(12n + 5)q(12n+5)2 ,

E5(τ ) = 6g 1
6 ,0

(72τ ) =
∑

n∈Z
(6n + 1)q(6n+1)2 ,

E6(τ ) = 3e
−π i
3 g 1

3 ,
1
2
(18τ ) =

∑

n∈Z
(−1)n(3n + 1)q(3n+1)2 .

From Proposition 2.9 and Lemma 2.10, we see that to construct forms M̂a,b whose
images under the ξ 1

2
-operator are equal to a constant multiple of Em(τ/km) for some

suitable constants km we are only restricted by u − v for u, v ∈ C\(Zτ + Z), not by u
and v individually. Since the theta function ϑ(v; τ ) appears as a prominent factor in the
definition of μ̂ from (2.2), we again use the classification in [24] to restrict to those ϑ(v; τ )
which are eta-quotients of weight 1/2 appearing in the list in (14).
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Lemma 2.11 For τ ∈ H, we have that

ϑ
(τ

2
; τ

)
= −iq− 1

8 e1
(τ

2

)
, ϑ

(τ

4
; τ

)
= −iq− 1

32 e5
( τ

32

)
,

ϑ

(
τ

2
− 1

2
; τ

)
= q− 1

8 e2
(τ

2

)
, ϑ

(
τ

4
− 1

2
; τ

)
= q− 1

32 e6
( τ

32

)
,

ϑ
(τ

3
; τ

)
= −iq− 1

18 e3
( τ

72

)
, ϑ

(τ

6
; τ

)
= −iq− 1

72 e7
( τ

18

)
,

ϑ

(
τ

3
− 1

2
; τ

)
= q− 1

18 e4
( τ

72

)
, ϑ

(
τ

6
− 1

2
; τ

)
= q− 1

72 e8
( τ

18

)
.

(32)

Proof Using (2.2), we have that

ϑ

(
τ − 1

2
; 2τ

)

= −iq
1
4 e−π i(τ− 1

2 )
∏

n≥1
(1 − q2n)(1 − e2π i(τ− 1

2 )q2n−2)(1 − e−2π i(τ− 1
2 )q2n)

= q− 1
4

∏

n≥1
(1 − q2n)(1 + q2n−1)2

= q− 1
4

∏

n≥1

(1 − q2n)(1 + qn)2

(1 + q2n)2
· (1 − qn)2(1 − q2n)2

(1 − q2n)2(1 − qn)2

= q− 1
4

∏

n≥1

(1 − q2n)5

(1 − qn)2(1 − q4n)2
= q− 1

4
η(2τ )5

η(τ )2η(4τ )2
= q− 1

4 e2(τ ),

which is the first identity above with τ → τ/2. The rest follow from similar arguments.
�

Note thatϑ
(

τ
3 ; τ − 1

2
) = e(− 3

8 )q
− 1

18 e10
(

τ
72

)
andϑ

(
τ
3 − 1/2; τ − 1

2
) = e( 18 )q

− 1
18 e11

(
τ
72

)
,

which are not of the form ϑ(v; τ ). Similarly, e11, e12, and e13 cannot be written in the form
ϑ(v; τ ). Hence, we restrict our constructions to the first eight en functions.

3 Eta–theta functions andmockmodular forms
We are now ready to construct our families of mock theta functions. For each weight 3/2
theta function Em we construct eight corresponding functions Vmn, one for each weight
1/2 theta function en. However, in some cases the Vmn are degenerate due the presence
of poles. Here, we will focus on the construction of V11 as the other constructions follow
similarly. Our goal forV11 is to construct a function that has shadow associated to E1, and
the factor e1 in its series representation.
First, we observe from Lemma 2.10 that E1(τ ) = 4g 1

4 ,0
(32τ ). Thus, we make the change

τ �→ 32τ and consider a function of the form μ(u, v; 32τ ) as in (2.2). We choose v so that
the theta function ϑ(v; 32τ ) appearing in (2.2) is in terms of e1. By Lemma 2.11 we see
that we should choose v = 16τ so that ϑ (16τ ; 32τ ) = −iq−4e1 (16τ ). By Proposition 2.9
the corresponding functionM− 1

4 ,− 1
2
(32τ ) has shadow related to g 1

4 ,0
(32τ ), so long as

u − 16τ = u − v = −1
4
(32τ ) −

(
−1
2

)
= −8τ + 1

2
.
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Thus we choose u = 8τ +1/2, and calculate the series form of−q−1μ(8τ +1/2, 16τ ; 32τ )
using (2.2). Our final step is to renormalize with τ �→ τ/32. We obtain

V11(τ ) = q−9/32

e1(τ/2)
∑

n∈Z

(−1)nq(n+1)2/2

1 + qn+1/4 = w1qt1μ
(
u(11)τ , v(11)τ ; τ

)

:= −q−1/32μ

(
τ

4
+ 1

2
,
τ

2
; τ

)
.

We repeat this process for each of the remaining en, to find V1n as above with shadow
related to E1 and with the theta function en as a factor in its series representation.We find
that the construction of V16 leads to the choice u = 0 ∈ C\(32Zτ + Z), and so this fails
to produce a mock modular form due to the existence of poles. Each of the V1n are fully
listed in the Appendix.
We repeat this entire process for each Em with m ∈ {2, 3, 5, 6}. The case E4 requires

some additional care as E4(τ ) = 12e
−π i
12 g 1

12 ,
1
2
(288τ ) + 12e

−5π i
12 g 5

12 ,
1
2
(288τ ). In this case we

build two different forms V4′n and V4′′n, one for each ga,b function, using the process
described above. We then add these forms to create our desired mock theta function. For
example,

V41(τ ) = V4′1(τ ) + V4′′1(τ ) = −q−121/288

e1(τ/2)
∑

n∈Z

(−1)nq(n+1)2/2

1 − qn+1/12

+ −q−49/288

e1(τ/2)
∑

n∈Z

(−1)nq(n+1)2/2

1 − qn+5/12 ,

= iq−25/288μ
( τ

12
,
τ

2
; τ

)
+ iq−1/288μ

(
5τ
12

,
τ

2
; τ

)
.

All of the Vmn, including the V4n, are listed in the Appendix.

Remark Using Lemma 2.3, we see

V57(τ ) − V58(τ ) = −q−1/18
(

μ

(
−τ

6
+ 1

2
,
τ

6
; τ

)
− μ

(
−τ

6
,
τ

6
− 1

2
; τ

))
= 0.

A comparison of coefficients reveals that all other series are unique.

Remark A coefficient search on the On-Line Encyclopedia of Integer Sequences suggests
the following equalities:

−q1/24V41(12τ ) = ψ(q), q1/24V58(3τ ) = χ (q), q−2/3V64(6τ ) = ρ(q),

−q1/8V21(4τ ) = A(q), −q1/8V12(4τ ) = U1(q), 2q1/8V15(4τ ) = U0(q),

whereψ(q), χ (q), and ρ(q) are Ramanujan’s third order mock thetas,A(q) is Ramanujan’s
second order mock theta, and U1(q) and U0(q) are Gordon and McIntosh’s eighth order
mock thetas. These series are defined in [2] and [14]. All of these identities indeed hold,
as the following discussion illustrates.
The latter three equalities follow from the definitions in [14] and Lemma 2.3. The third

equality follows from identity (5.10) in [18].
The first and second identities also follow from results in [18]. To see the first identity,

using the m(a, b, c) notation from [18], it is not difficult to show by definition of V41 and
[18, (3.2a), (3.2b), Corollary 3.4] that −q

1
24V41(12τ ) = −m(q5, q12, q6)− q−1m(q, q12, q6).
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We also have from [18, (5.6)] that ψ(q) = −q−1m(q, q12, q2) − m(q5, q12, q2). Thus, the
first identity above relating V41 and ψ is equivalent to

m(q5, q12, q2) − m(q5, q12, q6) + q−1
(
m(q, q12, q2) − m(q, q12, q6)

)
= 0. (33)

Using [18, Theorem3.3] twice, first with (x, q, z0, z1) = (q5, q12, q6, q2) and then with
(x, q, z0, z1) = (q, q12, q6, q2), the claim in (33) reduces to an identity between modular
forms, which follows after applying [18, (2.2a), (2.2b)], and simplifying.
The second identity follows similarly, first by rewriting

q
1
24V58(3τ ) = −q−1m(−q−1, q3,−q

1
2 ), using the second equality in [18, (5.7)] as well as

[18, (3.2b)], and then by using [18, Theorem3.3] with (x, q, z0, z1) = (−q−1, q3, q−1,−q
1
2 )

to reduce the claimed identity relating V58 and χ (q) to an identity between modular
forms. The claimed identity between modular forms follows after applying [18, (2.2a),
(2.2b), (2.2c)], and simplifying.

3.1 Proof of Theorem 1.1

First, we wish to establish the mock modularity of the 51 functions Vmn for admissible
(m, n) whenm ∈ T ′ \{4}.Wewillmake use of Proposition 2.9, butmust also determine the
modular transformation properties of these functions. For such pairs (m, n), the functions
Vmn, as summarized in the Appendix, may be expressed in terms of the μ-function, and
parameters wm, tm, u(mn)

τ , v(mn)
τ as

Vmn(τ ) = wmqtmμ(u(mn)
τ , v(mn)

τ ; τ ). (34)

We denote their completions by

V̂mn(τ ) := wmqtmμ̂(u(mn)
τ , v(mn)

τ ; τ ). (35)

Whenm = 4, for any admissible n, we consider

V4n(τ ) = V4′n(τ ) + V4′′n(τ ),

and the completions

V̂4n(τ ) := V̂4′n(τ ) + V̂4′′n(τ ).

Toward obtaining their modular properties, we first state the following preliminary
lemma, which follows directly from Lemma 2.5. Throughout, for xτ ∈ C\(Zτ + Z), we
define for any γ = ( a b

c d
) ∈ SL2(Z),

x̃γ ,τ := xγ τ · (cτ + d).

Lemma 3.1 Let γ = ( a b
c d

) ∈ SL2(Z), τ ∈ H, and uτ , vτ ∈ C\(Zτ + Z). Suppose ũγ ,τ =
uτ + kγ · τ + 	γ , and ṽγ ,τ = vτ + rγ · τ + sγ , for some integers kγ , 	γ , rγ , sγ . Then we have
that

μ̂
(
uγ τ , vγ τ ; γ τ

) = μ̂

(
ũγ ,τ

cτ + d
,

ṽγ ,τ
cτ + d

; γ τ

)

= ψ(γ )−3(−1)kγ +	γ +rγ +sγ (cτ + d)
1
2 q

(kγ −rγ )2
2

×e
(−c(̃uγ ,τ − ṽγ ,τ )2

2(cτ + d)
+ (kγ − rγ )(uτ − vτ )

)
μ̂(uτ , vτ ; τ ).
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We next provide two technical lemmas, Lemmas 3.2 and 3.3, which will allow us to
efficiently establish the mock modularity of our functions Vmn, when combined with
Lemma 3.1 and Proposition 2.9 above.

Lemma 3.2 Let γ = ( a b
c d

) ∈ SL2(Z), τ ∈ H, j ∈ {1, 2}, and u(j)τ , v(j)τ ∈ C \ (Zτ + Z).
Suppose there exist constants k(j)γ , 	(j)γ , r(j)γ , s(j)γ ∈ R satisfying ũ(j)γ ,τ = u(j)τ + k (j)γ · τ + 	

(j)
γ , and

ṽ(j)γ ,τ = v(j)τ + r(j)γ · τ + s(j)γ . Further, define the difference functions

d(j)τ := u(j)τ − v(j)τ , d̃(j)γ ,τ := ũ(j)γ ,τ − ṽ(j)γ ,τ ,

δ
(j)
γ := k (j)γ − r(j)γ , ρ

(j)
γ := 	

(j)
γ − s(j)γ .

Suppose that d(1)τ = d(2)τ . Then we have that

d̃(1)γ ,τ = d̃(2)γ ,τ , δ(1)γ = δ(2)γ , and ρ(1)
γ = ρ(2)

γ .

Proof of Lemma 3.2 The first assertion follows from the fact that d(1)τ = d(2)τ , that cτ +d �=
0, and the definitions of ũ(j)γ ,τ and ṽ(j)γ ,τ . To prove the second and third assertions, we have
that ũ(j)γ ,τ = u(j)τ + k (j)γ · τ + 	

(j)
γ and ṽ(j)γ ,τ = v(j)τ + r(j)γ · τ + s(j)γ . Subtracting the second of

these equalities from the first, we have that d̃(j)γ ,τ = d(j)τ + δ
(j)
γ · τ + ρ

(j)
γ . But d(1)τ = d(2)τ

and d̃(1)γ ,τ = d̃(2)γ ,τ , which implies that δ
(1)
γ · τ + ρ

(1)
γ = δ

(2)
γ · τ + ρ

(2)
γ . The second and third

assertions now follow, using the fact that δ
(j)
γ and ρ

(j)
γ are constants in R, and τ ∈ H. �

In order to utilize Lemma 3.1 to determine the modular transformation properties
for the functions Vmn, we need to know for which γ = ( a b

c d
) ∈ SL2(Z) we have that

ũ(mn)
γ ,τ −u(mn)

τ ∈ Zτ +Z, and ṽ(mn)
γ ,τ − v(mn)

τ ∈ Zτ +Z. We note the following lemma, which
follows directly by using the definition of x̃γ ,τ .

Lemma 3.3 Let xτ ∈ C\(Zτ + Z) be of the form

xτ = ατ + β

N
,

where N ∈ N, and 1 ≤ α,β ≤ N − 1. For fixed γ = ( a b
c d

) ∈ SL2(Z), we have that
x̃γ ,τ − xτ ∈ Zτ + Z if and only if the following congruences hold

αa + βc ≡ α (mod N )

αb + βd ≡ β (mod N ).

The following corollary follows directly from Lemma 3.3. We note that in addition to
the commonly used “upper triangular” congruence subgroups �0(N ),�1(N ), we also use
the standard notation �0(N ),�1(N ) to represent the corresponding “lower triangular”
versions.

Corollary 3.4 In the context of the above lemma, when α = 0, and β is relatively prime to
N, then x̃γ ,τ − xτ ∈ Zτ +Z if and only if γ ∈ �1(N ). Similarly, if β = 0, and α is relatively
prime to N, then x̃γ ,τ − xτ ∈ Zτ + Z if and only if γ ∈ �1(N ).

In Table 1, we list the congruence subgroups Amn for each mock modular form Vmn in
Theorem 1.1. These are computed using Lemma 3.3 and Corollary 3.4, and are used in
the proof of Theorem 1.1 below.
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Table 1 Congruence subgroups Amn for eachmockmodular form Vmn

n\m 1 2 3 4, 4′, 4′′ 5 6
1 �1(4) ∩ �0(2) �1(4) �1(6) ∩ �0(2) �1(12) �1(6) ∩ �0(2) �1(6)

2 �1(4) ∩ �0(2) �1(4) ∩ �0(2) �1(6) ∩ �0(2) �1(12) ∩ �0(2) �1(6) ∩ �0(2) �1(6) ∩ �0(2)

3 �1(12) ∩ �0(2) �1(12) �1(6) ∩ �0(2) �1(12) �1(3) ∩ �0(2) �1(6)

4 �1(12) ∩ �0(2) �1(12) ∩ �0(2) �1(6) ∩ �0(2) �1(12) ∩ �0(2) – �1(6) ∩ �0(2)

5 �1(4) ∩ �0(2) – �1(12) ∩ �0(2) �1(12) �1(12) ∩ �0(2) �1(12)

6 – �1(4) ∩ �0(2) �1(12) ∩ �0(2) �1(12) ∩ �0(2) �1(12) ∩ �0(2) �1(12) ∩ �0(2)

7 �1(12) ∩ �0(2) �1(12) �1(6) ∩ �0(2) �1(12) �1(6) ∩ �0(2) –

8 �1(12) ∩ �0(2) �1(12) ∩ �0(2) – �1(12) ∩ �0(2) �1(6) ∩ �0(2) �1(6) ∩ �0(2)

Proof of Theorem 1.1 We first consider the functions Vmn wherem ∈ T ′\{4}. After doing
so, we will address the more delicate case of m = 4. We begin by considering (for
m ∈ T ′\{4}) the defining parameters u(mn)

τ and v(mn)
τ from the Appendix, as well as their

associated values ũ(mn)
γ ,τ and ṽ(mn)

γ ,τ , where γ = ( a b
c d

) ∈ SL2(Z). For γ ∈ Amn as defined in
Table 1, we may write

ũ(mn)
γ ,τ = u(mn)

τ + k (mn)
γ · τ + 	(mn)

γ ,

ṽ(mn)
γ ,τ = v(mn)

τ + r(mn)
γ · τ + s(mn)

γ ,

where k (mn)
γ , 	(mn)

γ , r(mn)
γ , s(mn)

γ ∈ Z. For example, when (m, n) = (2, 2),wehave thatu(22)τ :=
τ
4 − 1

2 = τ−2
4 and v(22)τ := τ

2 − 1
2 = τ−1

2 . By Lemma 3.3, we see that ũ(22)γ ,τ − u(22)τ ∈ Zτ +Z

if and only if

a + 2c ≡ 1 (mod 4)

b + 2d ≡ 2 (mod 4),

whereas ṽ(22)γ ,τ − v(22)τ ∈ Zτ + Z if and only if

a + c ≡ 1 (mod 2),

b + d ≡ 1 (mod 2).

Recalling that ad − bc = 1, a straightforward calculation shows that these congruences
are simultaneously satisfied if and only if γ ∈ �1(4) ∩ �1(2), which is A22 in Table 1.
Thus, for generalm ∈ T ′\{4} we may apply Lemma 3.1, which reveals that

V̂mn(γmnτ ) = ψ(γmn)−3(−1)k
(mn)
γmn +	

(mn)
γmn +r(mn)

γmn +s(mn)
γmn (cmnτ + dmn)

1
2 φ(m)

n,γmn,τ V̂mn(τ ),

where for γ = ( a b
c d

) ∈ SL2(Z), the functions φ
(m)
n,γ ,τ are defined by

φ(m)
n,γ ,τ := e (tmγ τ ) e

( −c
2(cτ + d)

(ũ(mn)
γ ,τ − ṽ(mn)

γ ,τ )2
)
q

1
2 (k

(mn)
γ −r(mn)

γ )2

×e
(
(u(mn)

τ − v(mn)
τ )(k (mn)

γ − r(mn)
γ )

)
q−tm . (36)

Next, we define the difference functions

d(mn)
τ := u(mn)

τ − v(mn)
τ , d̃(mn)

γ ,τ := ũ(mn)
γ ,τ − ṽ(mn)

γ ,τ , δ(mn)
γ := k (mn)

γ − r(mn)
γ .
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By our hypotheses, we have that d(mn)
τ = D(m)

τ , for some function D(m)
τ , which is indepen-

dent of n. Thus, by Lemma 3.2, we have for any n such that (m, n) is an admissible pair that
d̃(mn)

γ ,τ = D̃(m)
γ ,τ and δ

(mn)
γ = �

(m)
γ , for some functions D̃(m)

γ ,τ and �
(m)
γ which are independent

of n. For example, whenm = 2, we have that

D(2)
τ = −τ

4
, D̃(2)

γ ,τ = −1
4
(aτ + b), �(2)

γ = 1 − a
4

.

Thus, the functionsφ
(m)
n,γ ,τ defined in (36) are in fact independent ofn; that is,φ(m)

n,γ ,τ = �
(m)
γ ,τ ,

where

�(m)
γ ,τ := e (tmγ τ ) e

( −c
2(cτ + d)

(D̃(m)
γ ,τ )2

)
q

1
2 (�

(m)
γ )2e

(
D(m)

τ �(m)
γ

)
q−tm .

After some simplification, using the fact that det γ = 1 for any γ ∈ SL2(Z), we find that
�

(m)
γ ,τ = ε

(m)
γ , where

ε(m)
γ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e (abtm) , m = 2, 4′, 4′′, 6,

e
(
4−4a−ab+4c

32

)
, m = 1,

e
(
6−6a−ab+18c−9cd

72

)
, m = 3,

e
(
12−12a−4ab+18c−9cd

72

)
, m = 5,

and in particular, is a root of unity, and thus also independent of τ . Thus, we have shown
form ∈ T ′ \ {4} that

V̂mn(γmnτ ) = ψ(γmn)−3(−1)k
(mn)
γmn +	

(mn)
γmn +r(mn)

γmn +s(mn)
γmn ε(m)

γmn (cmnτ + dmn)
1
2 V̂mn(τ ), (37)

as desired.
Whenm = 4, some additional care is required, as the function V4n is formed by adding

V4′n andV4′′n.While the groupsA4′n andA4′′n are equal, a priori, it is not clear for amatrix
γn = ( a b

c d
) ∈ A4′n = A4′′n = A4n that the two multipliers

(−1)k
(4′n)
γn +	

(4′n)
γn +r(4

′n)
γn +s(4

′n)
γn ε(4

′)
γn and (−1)k

(4′′n)
γn +	

(4′′n)
γn +r(4

′′n)
γn +s(4

′′n)
γn ε(4

′′)
γn

are equal, which we desire in order to give a transformation property for the func-
tions V̂4n by adding the transformations in (37) when m = 4′ and m = 4′′. By par-
ity considerations, a direct calculation reveals that indeed, (−1)k

(4′n)
γn +	

(4′n)
γn +r(4

′n)
γn +s(4

′n)
γn =

(−1)k
(4′′n)
γn +	

(4′′n)
γn +r(4

′′n)
γn +s(4

′′n)
γn . For the remaining roots of unity we use fact that a = 1+ 12a′

and b = 12b′ for some integers a′ and b′, and hence,

ε(4
′′)

γn = ζ
−(1+12a′)12b′
288 = ζ−b′

24 (−1)−a′b′ = ζ−25b′
24 (−1)−25a′b′ = ζ

−25(1+12a′)12b′
288

= ε(4
′)

γn .

Thus, whenm = 4, (37) holds as well, with the multiplier

(−1)k
(4n)
γ4n +	

(4n)
γ4n +r(4n)γ4n +s(4n)γ4n ε(4)γ4n := (−1)k

(4′n)
γ4n +	

(4′n)
γ4n +r(4

′n)
γ4n +s(4

′n)
γ4n ε(4

′)
γ4n

= (−1)k
(4′′n)
γ4n +	

(4′′n)
γ4n +r(4

′′n)
γ4n +s(4

′′n)
γ4n ε(4

′′)
γ4n .
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To show that the functions V̂mn are harmonic Maass forms, we must additionally show
that they are annihilated by the operator� 1

2
. As summarized in the Appendix, we have for

any admissible pair (m, n) that the function V̂mn(τ ) may be expressed, up tomultiplication
by an easily determined constant αmn, as follows:

V̂1n(τ ) = α1nM̂− 1
4 ,− 1

2
(τ ), V̂4′n(τ ) = α4′nM̂− 5

12 ,0
(τ ), V̂5n(τ ) = α5nM̂− 1

3 ,− 1
2
(τ ),

V̂2n(τ ) = α2nM̂− 1
4 ,0

(τ ), V̂4′′n(τ ) = α4′′nM̂− 1
12 ,0

(τ ), V̂6n(τ ) = α6nM̂− 1
6 ,0

(τ ),

V̂3n(τ ) = α3nM̂− 1
6 ,− 1

2
(τ ), V̂4n(τ ) = α4n

(
M̂− 5

12 ,0
(τ ) + M̂− 1

12 ,0
(τ )

)
, (38)

where the functions M̂a,b(τ ) are defined in (27). We then apply Proposition 2.9 to see
that the functions V̂mn are annihilated by the operator � 1

2
. That these forms satisfy

adequate growth conditions follows from their definitions. Clearly, the functions Vmn are
the holomorphic parts of the forms V̂mn, hence, are mock modular.
Finally, we prove that for m ∈ T , the functions Vmn have, up to a constant multiple,

shadows given by the weight 3/2 eta–theta functions Em( 2τc2m ). To show this, we use (38),
Proposition 2.9, and Lemma 2.10. In the case ofm = 1, combining (38) with Proposition
2.9 part (i) shows that up to a constant, the mock modular forms V1n have shadows given
by gc1

4 ,0
(τ ). It is not difficult to show by definition that gc1

4 ,0
(τ ) = g 1

4 ,0
(τ ). We previously

established in Lemma 2.10 that E1(τ/32) = 4g 1
4 ,0

(τ ), hence, we have proved that the
functions V1n(τ ) have shadows given by a (computable) constant multiple of the eta–
theta function E1(τ/32), as claimed. The analogous results for the functions Vmn for the
other values ofm follow by a similar argument. �

4 Quantum sets
In order to establish quantum modularity of the functions Vmn, we must first determine
viable sets of rationals.We call a subset S ⊆ Q a quantum set for a function F with respect
to the group G ⊆ SL2(Z) if both F (x) and F (Mx) exist (are non-singular) for all x ∈ S and
M ∈ G.

4.1 Utilizing Theorem 2.4

By examining our catalogue of Vmn in the Appendix, we see that precisely when n = 1 we
have a μ-function in the form given in Theorem 2.4 of the third author. Using Theorem
2.4 in these cases, and the notation from the Appendix, we directly obtain the following
lemma.

Lemma 4.1 For m ∈ T ′\{4}, we have that

Vm1(τ ) = iwmqtm+ 1
8 · g2

(
e
(
u(m1)

τ

2

)
; q

1
2

)

−wmqtm+ 1
8 e

(
−u(m1)

τ

2

)
· η(τ )4

η( τ
2 )2ϑ(u

(m1)
τ ; τ )

.

Furthermore, when n �= 1 we are still able to utilize Theorem 2.4. Let m ∈ T ′\{4}, and
n admissible. Then by Lemma 2.3(4), and using the fact that ϑ ′(0; τ ) = −2πη(τ )3, we see
that
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Vmn(τ ) − Vm1(τ ) = iwmqtm
η3(τ )ϑ

(
τ
2 + u(mn)

τ ; τ
)

ϑ(u(mn)
τ − u(m1)

τ ; τ )

ϑ(u(m1)
τ ; τ )ϑ

(
τ
2 ; τ

)
ϑ(u(mn)

τ ; τ )ϑ(v(mn)
τ ; τ )

=: Fmn(τ ).

(39)

We will explicitly show in Lemma 5.1 that these functions Fmn(τ ) transform like weakly
holomorphic modular forms of weight 1/2. Since we can write

Vmn(τ ) = Vm1(τ ) + Fmn(τ ) (40)

form ∈ T ′\{4}, and form = 4,

V4n(τ ) = V41(τ ) + F4′n(τ ) + F4′′n(τ ), (41)

once we establish quantum sets for the Vm1, which we will do in Sect. 4.2, we can use (4.1)
and (4.1) to find subsets that are quantum sets for the more general Vmn, for eachm ∈ T .
We do so in Sect. 4.3.

4.2 Determining quantum sets for Vm1

Observe from Lemma 4.1 that form ∈ T ′\{4}, Vm1(τ ) is a sum of two of terms, each with
a coefficient that is a constant times a power of q. The first term is of the form

g2(amq
1

2bm ; q
1
2 ) =

∞∑

n=0

(−q
1
2 ; q

1
2 )nqn(n+1)/4

(amq
1

2bm ; q
1
2 )n+1(a−1

m q
bm−1
2bm ; q

1
2 )n+1

, (42)

where am = 1 when m is even, am = i when m is odd, and (b1, b2, b3, b4′ , b4′′ , b5, b6) =
(4, 4, 3, 12, 12/5, 6, 3). The second term is

η(τ )4

η( τ
2 )2ϑ(u

(m1)
τ ; τ )

,

which by (2.2) we see is equal to ie(u(m1)
τ ) multiplied by the infinite product

fm(τ ) := (q; q)∞(−q
1
2 ; q

1
2 )2∞

(a2mq
1
bm ; q)∞(a−2

m q
bm−1
bm ; q)∞

. (43)

Note that for any τ ∈ Q, constant and q-power multiples of these terms will not affect
whether Vm1(τ ) and Vm1(Mτ ) exist. Thus, we may determine quantum sets for each
Vm1(τ ) by examining the sum and product appearing in Eqs. (4.2) and (43). We seek
rational numbers h/k ∈ Q such that for sufficiently large n,

0 =
(

−e
(

h
2k

)
; e

(
h
2k

))

n
=

n∏

j=1

(
1 + e

(
jh
2k

))
, (44)

and hence, the infinite sum defining the function g2 in (4.2) terminates, and can be explic-
itly evaluated. The identity in (44) holds if and only if jh/k is an odd integer for some
1 ≤ j ≤ n. This can never happen when h is even, and when h is odd, then j = k causes
the series to terminate at n = k . Thus, the largest possible set for which (44) can hold is

S := {
h/k ∈ Q | h ∈ Z, k ∈ N, gcd(h, k) = 1, h ≡ 1 (mod 2)

}
. (45)
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We also set

S′ := {
h/k ∈ S | h ≡ ±1 (mod 6)

}
,

Sev :=
{
h/k ∈ S | k ≡ 0 (mod 2)

}
, (46)

Sod := {
h/k ∈ S | k ≡ 1 (mod 2)

}
,

and define the subsets Sm1 ⊆ S by

S11, S21, S41 := S,

S31, S61 := S′,
S51 := S′ ∪ Sev.

We will prove the following theorem.

Theorem 4.2 For m ∈ T, the set Sm1 is a quantum set for Vm1 with respect to the group
Gm1, where

G11 :=
〈( 1 0

2 1
)
,
( 1 4
0 1

)〉 ⊂ �0(2) ∩ �0(4),

G21 :=
〈( 1 0

1 1
)
,
( 1 4
0 1

)〉 ⊂ �0(4),

G31, G51 :=
〈( 1 0

2 1
)
,
( 1 6
0 1

)〉 ⊂ �0(2) ∩ �0(6),

G41 :=
〈( 1 0

1 1
)
,
( 1 12
0 1

)〉 ⊂ �0(12),

G61 :=
〈( 1 0

1 1
)
,
( 1 6
0 1

)〉 ⊂ �0(6).

Before proving Theorem 4.2 we prove two lemmas which analyze the behavior of Vm1
on Sm1.

Lemma 4.3 For eachm ∈ T ′\{4}we have that g2(amq
1

2bm ; q
1
2 ) is well-defined for τ ∈ Sm1.

Proof We have seen above that for any τ ∈ S, the series in (4.2) terminates at n = k . We
further require that

(
ame

( h
2bmk

)
; e

( h
2k

))
n+1, and

(
a−1
m e

( (bm−1)h
2bmk

)
; e( h

2k )
)
n+1 do not vanish

before the termination of the series. First, we note that
(
ame

(
h

2bmk

)
; e

(
h
2k

))

n+1

=
n∏

j=0

(
1 − ame

(
(bmj + 1)h

2bmk

)) (
a−1
m e

(
(bm − 1)h
2bmk

)
; e

(
h
2k

))

n+1

=
n∏

j=0

(
1 − a−1

m e
(
(bm(j + 1) − 1)h

2bmk

))
.

When m is even, we have am = a−1
m = 1, and when m is odd, we have am = i and

a−1
m = −i. Thus form even we need to avoid the existence of an r ∈ Z and 0 ≤ j ≤ n such

at least one of the following hold,

h(bmj + 1) = 2bmkr, (47)

h(bm(j + 1) − 1) = 2bmkr. (48)
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This can never occur for the casesm = 2, 4′ because b2 = 4 and b4′ = 12 are even while h
is odd.Whenm = 4′′, multiplying the equations through by 5 gives a similar contradiction
since 5b4′′ = 12 is even while 5, h are odd. Thus whenm = 2, 4′, 4′′, S is the largest set of
rationals over which the sum defining g2(amq

1
2bm ; q

1
2 ) terminates.

For m = 6, we have b6 = 3, so we see that one of h(3j + 1) = 6kr or h(3j + 2) = 6kr
can occur when h ≡ 3 (mod 6). This is because we must have that k ≡ ±1 (mod 3),
so if k ≡ 2 (mod 3), let j = 2k−1

3 , then we have that 0 < j < k is an integer and so is
r = h(3j+1)

6k . Similarly, if k ≡ 1 (mod 3), let j = 2k−2
3 , then we have that 0 < j < k is an

integer and so is r = h(3(j+1)−1)
6k . However, when h ≡ ±1 (mod 6) we see that neither (47)

nor (48) can be satisfied by reducing the equalities modulo 3. Thus whenm = 6, S61 is the
largest set of rationals over which the sum defining g2(amq

1
2bm ; q

1
2 ) terminates.

Similarly, whenm is odd we wish to avoid the existence of an r ∈ Z and 0 ≤ j ≤ n such
that at least one of the following hold,

2h(bmj + 1) = bmk(4r − 1), (49)

2h(bm(j + 1) − 1) = bmk(4r + 1). (50)

This can never occur for the casem = 1 because here b1 = 4 while h is odd, meaning the
left hand side of neither equation is divisible by 4. Thus when m = 1, S is the largest set
of rationals over which the sum defining g2(amq

1
2bm ; q

1
2 ) terminates.

Form = 3, we have b3 = 3 so Eqs. (49), (50) become

2h(3j + 1) = 3k(4r − 1),

2h(3j + 2) = 3k(4r + 1).

When h ≡ ±1 (mod 6), or if h ≡ 3 (mod 6) and k is odd, we see that neither (49) nor (50)
canbe satisfied.However ifh ≡ 3 (mod 6) and k is even, thenoneof 2h(3j+1) = 3k(4r−1)
or 2h(3j − 2) = 3k(4r + 1) can occur for some 0 ≤ j < k . This is because then k ≡ ±2
(mod 6), so we may consider the following four possible cases.

(1) Let h ≡ 3 (mod 12) and k ≡ 2 (mod 6). Then j = 5k−4
6 ∈ N, and r =

1
4

(
2h(3j+2)

3k − 1
)

∈ Z.
(2) Let h ≡ 3 (mod 12) and k ≡ 4 (mod 6). Then j = k−4

6 ∈ N, and r =
1
4

(
2h(3j+2)

3k − 1
)

∈ Z.
(3) Let h ≡ 9 (mod 12) and k ≡ 2 (mod 6). Then j = k−2

6 ∈ N, and r =
1
4

(
2h(3j+1)

3k + 1
)

∈ Z.
(4) Let h ≡ 9 (mod 12) and k ≡ 4 (mod 6). Then j = 5k−2

6 ∈ N, and r =
1
4

(
2h(3j+1)

3k + 1
)

∈ Z.

In eachof these cases observe that 0 ≤ j < k . Thuswe see thatwhenm = 3, actuallyS′∪Sod
is the largest set of rationals over which the sum defining g2(amq

1
2bm ; q

1
2 ) terminates.

However, we will see in the next lemma that we must eventually restrict to S31.
Form = 5 we have b5 = 6 so Eqs. (49), (50) become

h(6j + 1) = 3k(4r − 1),

h(6j + 5) = 3k(4r + 1).
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Whenh ≡ ±1 (mod 6), or ifh ≡ 3 (mod 6) and k is even,we see that neither (49) nor (50)
can be satisfied. However if h ≡ 3 (mod 6) and k is odd, then one of h(6j+1) = 3k(4r−1)
or h(6j + 5) = 3k(4r + 1) can occur for some 0 ≤ j < k . This is because then k ≡ ±1
(mod 6), so we may consider the following four possible cases.

(1) Let h ≡ 3 (mod 12) and k ≡ 1 (mod 6). Then j = 5k−5
6 ∈ N, and r = 1

4 (
h(6j+5)

3k −
1) ∈ Z.

(2) Let h ≡ 3 (mod 12) and k ≡ 5 (mod 6). Then j = k−5
6 ∈ N, and r = 1

4 (
h(6j+5)

3k −1) ∈
Z.

(3) Let h ≡ 9 (mod 12) and k ≡ 1 (mod 6). Then j = k−1
6 ∈ N, and r = 1

4 (
h(6j+1)

3k +1) ∈
Z.

(4) Let h ≡ 9 (mod 12) and k ≡ 5 (mod 6). Then j = 5k−1
6 ∈ N, and r = 1

4 (
h(6j+1)

3k +
1) ∈ Z.

In each of these cases observe that 0 ≤ j < k . Thus we see that when m = 5, S51 is the
largest set of rationals over which the sum defining g2(amq

1
2bm ; q

1
2 ) terminates. �

We next analyze the second term from Lemma 4.1, fm(τ ), when τ ∈ Sm1. The following
result is used to prove the transformation formulas in the next section.

Lemma 4.4 For each m ∈ T ′\{4}, fm(τ ) vanishes for each τ ∈ Sm1.

Proof We observe from (43) that the product (−q
1
2 ; q

1
2 )∞ = ∏

n≥1(1 + q
n
2 ) appears in

the numerator of fm(τ ). Thus, as in our analysis of the g2 term, we see that for τ = h
k ∈ S

the n = k term of this product will be 0. Similarly, the n = k term of (q; q)∞ will also
vanish. Thus to show that fm(τ ) = 0 for τ ∈ Sm1 it remains to show that the products
in the denominators of fm(τ ) are finite and nonzero on Sm1 for terms 1 ≤ n ≤ k (when
expressed as products indexed by n). We see that the terms appearing in (a2mq

1
bm ; q)∞ and

(a−2
m q

bm−1
bm ; q)∞, are the squares of terms appearing in the denominators of g2(amq

1
2bm ; q

1
2 ).

We analyze them similarly as in Lemma 4.3. For τ = h
k , we have

(
(−1)me

(
h

bmk

)
; e

(
h
k

))

∞
=

∏

n≥0

(
1 − (−1)me

(
(bmn + 1)h

bmk

))

(
(−1)me

(
(bm − 1)h

bmk

)
; e

(
h
k

))

∞
=

∏

n≥0

(
1 − (−1)me

(
(bm(n + 1) − 1)h

bmk

))
.

Thus for m even we wish to avoid the existence of an r ∈ Z and 0 ≤ n ≤ k such at least
one of the following hold,

h(bmn + 1) = bmkr,

h(bm(n + 1) − 1) = bmkr.

For m = 2, 4′ we have that bm is even and h is odd so this cannot occur. When m = 4′′,
multiplying the equations through by 5 gives a similar contradiction since 5b4′′ = 12 is
even while 5, h are odd. When m = 6, we have b6 = 3. But for h

k ∈ S61, we have h ≡ ±1
(mod 6) and so this can never occur.
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Whenm is odd, we must show there is no r ∈ Z such that

h(bmn + 1) = bmk(2r + 1), (51)

h(bm(n + 1) − 1) = bmk(2r + 1). (52)

When m = 1, 5 we have that bm is even and h is odd so this cannot occur. When m = 3,
we have b3 = 3. But for h

k ∈ S31, we have that h ≡ ±1 (mod 6), so this can never occur
due to different residuesmodulo 3. Notice it is here that wemust restrict to S31 from S′

31. If
h ≡ 3 (mod 6) and k is odd, then either k ≡ 1 (mod 3), in which case we can let n = k−1

3
and r = h−3

6 in the first equation, or k ≡ 2 (mod 3), in which case we can let n = k−2
3

and r = h−3
6 in the second equation. Both instances result in a zero in the denominator

before termination. �

Remark Lemmas 4.3 and 4.4 imply that for each m ∈ T , Sm1 is our largest possible
quantum set for Vm1.

We now prove Theorem 4.2.

Proof (Proof of Theorem 4.2) Let m ∈ T . By Lemmas 4.3 and 4.4, we see that each
Vm1 is well-defined for τ ∈ Sm1, but it remains to be seen that Vm1 is well-defined for
each Mτ , where M ∈ Gm1. We conclude by proving that each set Sm1 is closed under
transformations by the matrices in Gm1. Observe that each Gm1 has two generators, one
of the form

( 1 0
A 1

)
and the other of the form

( 1 B
0 1

)
for positive integersAm, Bm. For h/k ∈ S

we have

Tm,1(h/k) :=
(

1 0
Am 1

)
h
k

= h
k + Amh

, Tm,2(h/k) :=
(
1 Bm
0 1

)
h
k

= h + Bmk
k

.

Since gcd(h, k) = 1, we have gcd(h, Amk + h) = gcd(h + Bmk, h) = 1. Moreover, we
note that Bm is even for each m, so when h is odd we have that h + Bmk is odd, and
thus Tm(h/k), T ′

m(h/k) ∈ S for all τ ∈ S. Thus for m = 1, 2, 4′, 4′′, 4 we have that
Tm(h/k), T ′

m(h/k) ∈ Sm1 for all τ ∈ Sm1. When m = 3, 5, 6 we have Bm = 6 so that
h + Bmk ≡ h (mod 6). Thus for m = 3, 5, 6, we see that T ′

m(h/k) ∈ Sm1 for all τ ∈ Sm1.
To see also that Tm(h/k) ∈ Sm1 for all τ ∈ Sm1, we only need to observe that in the case
m = 5, when k is even, then k + 2h is also even.
Now we need to also consider the inverses

T−1
m,1(h/k) :=

(
1 0

−Am 1

)
h
k

= h
k − Amh

, T−1
m,2(h/k) :=

(
1 −Bm
0 1

)
h
k

= h − Bmk
k

.

When k − Amh is positive, the same arguments as above go through. When k − Amh is
negative, we observe that

T−1
m (h/k) :=

(
1 0

−Am 1

)
h
k

= −h
Amh − k

,

has a positive denominator, and so again we use the arguments above. �

4.3 Determining quantum sets for general Vmn

In Sect. 4.2, we determined the quantum sets Sm1 for the function Vm1. In this section,
we will use (4.1) and (4.1) to determine the more general quantum sets Smn for the
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functions Vmn with n �= 1. Observe that our previous discussion shows that we must
require Smn ⊆ Sm1 for eachm ∈ T . We define the sets Smn for anym ∈ T and admissible
n below; for completeness, we also include the sets Sm1 previously determined. In Lemma
4.5, we establish that these sets are indeed appropriate, by showing that the auxiliary
functions Fmn appearing in (4.1) and (4.1) vanish at any rational point in Smn.
We define the 43 subsets Smn ⊆ Sm1 by

S11, S17, S21, S27, S41, S45, S47 := S,

S12, S18, S22, S28, S42, S52 := Sev,

S13, S23, S31, S34 , S35, S36, S43, S53, S61, S63, S64 , S65, S66 := S′,
S14 , S15, S24 , S26 := Sod,

S32, S33, S62 := S′ ∩ Sev,

S37, S68 := S′ ∩ Sod,

S44 := S′ ∪ Sod,

S46, S48, S51, S55, S56, S57, S58 := S′ ∪ Sev.

Lemma 4.5 For m ∈ T\{4} and h
k ∈ Smn, or for m ∈ {4′, 4′′} and h

k ∈ S4n, we have that

Fmn

(
h
k

)
= 0.

Proof of Lemma 4.5 Note that by applying the triple product formula (2.2) to each of the
ϑ-functions appearing in the definition of Fmn in (4.1), we can cancel the four copies
of (q; q)∞ appearing in the denominator with four of the five copies appearing in the
numerator (three of which arise from the function η3). Thus we may write Fmn(τ ) as a
constant multiple of q multiplied by

(q; q)∞
(q

1
2 ; q)2∞

· (e( τ
2 + u(mn)

τ ); q)∞(e(− τ
2 − u(mn)

τ ); q)∞
(e(u(m1)

τ ); q)∞(e(−u(m1)
τ )q; q)∞(e(u(mn)

τ ); q)∞(e(−u(mn)
τ )q; q)∞(e(v(mn)

τ ); q)∞(e(−v(mn)
τ )q; q)∞

.

(53)

Observe that for any τ = h/k ∈ S, we have that (q; q)∞ vanishes at the kth term when
expanded, and (q

1
2 ; q)2∞ never vanishes. Moreover, we have already demonstrated in the

proof of Lemma 4.4 that (e(u(m1)
τ ); q)∞(e(−u(m1)

τ )q; q)∞ does not vanish for τ = h/k ∈
Sm1, as this term appears in the denominator of fm. Thus, it suffices to show that when
τ = h/k ∈ Smn each of the products in

(e(u(mn)
τ ); q)∞(e(−u(mn)

τ )q; q)∞(e(v(mn)
τ ); q)∞(e(−v(mn)

τ )q; q)∞
is non-vanishing for terms 1 ≤ s ≤ k , when expanded as products indexed by s. Next,
we observe that v(mn)

τ depends only on n. In particular, v(mn)
τ = τ

cn when n is odd, and
v(mn)
τ = τ

cn − 1
2 when n is even, where (c1, c2, c3, c4 , c5, c6, c7, c8) = (2, 2, 3, 3, 4, 4, 6, 6).

Thus, for admissible pairs (m, n),

(e(v(mn)
τ ); q)∞(e(−v(mn)

τ )q; q)∞ =
⎧
⎨

⎩
(q

1
cn ; q)∞(q

cn−1
cn ; q)∞ when n odd

(−q
1
cn ; q)∞(−q

cn−1
cn ; q)∞ when n even.

When n is odd, we have that for τ = h/k ,

(q
1
cn ; q)∞(q

cn−1
cn ; q)∞ =

∏

j≥0

(
1 − e

(
(cnj + 1)h

cnk

))
×

(
1 − e

(
(cn(j + 1) − 1)h

cnk

))
.
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Thus for n odd we wish to avoid the existence of an r ∈ Z and 0 ≤ j ≤ k such that at least
one of the following hold:

h(cnj + 1) = cnkr,

h(cn(j + 1) − 1) = cnkr.

For n = 1, 5, 7 we have that cn is even and h is odd so this cannot occur. When n = 3, we
have c3 = 3. But for h

k ∈ S31, we have h ≡ ±1 (mod 6) and so we again have that this
cannot occur.
When n is even, we have that for τ = h/k ,

(
−q

1
cn ; q

)

∞

(
−q

cn−1
cn ; q

)

∞

=
∏

j≥0

(
1 − e

(
(cnj + 1)h

cnk
− 1

2

))(
1 − e

(
(cn(j + 1) − 1)h

cnk
− 1

2

))
,

so in this case we need to avoid the existence of an r ∈ Z and 0 ≤ j ≤ k such that at least
one of the following hold,

2h(cnj + 1) = cnk(2r + 1),

2h(cn(j + 1) − 1) = cnk(2r + 1).

When n = 6 we have cn = 4 and since h is odd so this cannot occur for any element in S.
When n = 2, both equations reduce to the equation h(2j+1) = k(2j+1). In the definitions
of the sets Sm2, we see that in each case k is even, and so this equation can never be satisfied
for an element of Sm2. When n = 4, we have the equations 2h(3j + 1) = 3k(2r + 1), and
2h(3j+2) = 3k(2r+1).Wesee that these cannotbe satisfiedwhenh �≡ 0 (mod 3), orwhen
h ≡ 3 (mod 6) and k odd. Thus, for elements of Sm4 they cannot be satisfied. Similarly,
when n = 8, we have the equations 2h(6j + 1) = 6k(2r + 1), and 2h(6j + 5) = 3k(6r + 1),
which also can’t be satisfied when h �≡ 0 (mod 3). In this case, they also can’t be satisfied
when h ≡ 3 (mod 6) and k even. The definitions of Sm8 shows that we are always in one
of these cases.
Thus, we have reduced the problem to showing that when τ = h/k ∈ Smn, the products

(e(u(mn)
τ ); q)∞(e(−u(mn)

τ )q; q)∞ (54)

are non-vanishing in their first k terms when expanded. Although at first glance it would
seem that we have many cases to consider, in fact we have already done most of the
work, we just need to compare each case to the defined set Smn. Comparing the values
of u(mn)

τ when m > 1 to the values of v(mn)
τ that we have already considered, and using

that e( 12 ) = e(− 1
2 ), we see that there are only about a dozen left to consider. Moreover,

the cases that are merely a negative multiple can be reduced fairly easily to the original
case. Thus the only u(mn)

τ we will consider here are u(13)τ = τ/12 + 1/2, u(14)τ = τ/12,
u(15)τ = 1/2, and u(4

′′2)
τ = 5τ/12 − 1/2.

For u(13)τ = τ/12 + 1/2, (4.3) becomes

(−q
1
12 ; q)∞(−q

11
12 ; q)∞

=
∏

j≥0

(
1 − e

(
(12j + 1)h

12k
− 1

2

))(
1 − e

(
(12(j + 1) − 1)h

12k
− 1

2

))
,
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and so we wish to avoid the existence of an r ∈ Z and 0 ≤ j ≤ k such that at least one of
the following hold,

h(12j + 1) = 6k(2r + 1),

h(12(j + 1) − 1) = 6k(2r + 1).

But since h is odd this can never occur.
For u(14)τ = τ/12, (4.3) becomes

(q
1
12 ; q)∞(q

11
12 ; q)∞ =

∏

j≥0

(
1 − e

(
(12j + 1)h

12k

)) (
1 − e

(
(12(j + 1) − 1)h

12k

))
,

and so we wish to avoid the existence of an r ∈ Z and 0 ≤ j ≤ k such that at least one of
the following hold,

h(12j + 1) = 12kr,

h(12(j + 1) − 1) = 12kr,

which again can never occur since h is odd.
For u(15)τ = 1/2, (4.3) becomes

(−1; q)∞(−q; q)∞ = 2
∏

j≥0

(
1 − e

(
jh
k

− 1
2

))2
,

so we wish to avoid the existence of an r ∈ Z and 0 ≤ j ≤ k such that 2hj = k(2r + 1)
holds, which can’t occur in S15 since k is odd.
Lastly, when u(4

′′2)
τ = 5τ/12 − 1/2, (4.3) becomes

(
−q

5
12 ; q

)

∞

(
−q

7
12 ; q

)

∞

=
∏

j≥0

(
1 − e

(
(12j + 5)h

12k
− 1

2

))(
1 − e

(
(12(j + 1) − 5)h

12k
− 1

2

))
,

and so we wish to avoid the existence of an r ∈ Z and 0 ≤ j ≤ k such that at least one of
the following hold,

h(12j + 5) = 6k(2r + 1),

h(12(j + 1) − 5) = 6k(2r + 1),

which can never occur since h is odd. �

5 Quantummodularity of the Vmn

We now make more precise the notion of a quantum modular form. For k ∈ 1
2Z, a

quantum modular form of weight k on the set S for the group G is a complex-valued
function f such that S is a quantum set for f with respect to the group G ⊆ SL2(Z).
Further, for all γ = ( a b

c d
) ∈ G, and for all x ∈ S (x �= −d

c ), the functions

hf,γ (x) := f (x) − ε(γ )(cx + d)−k f
(
ax + b
cx + d

)

are suitably continuous or analytic in (a subset of) R, as defined by Zagier in [30]. In this
paper, we will consider real analytic functions hf,γ . The ε(γ ) are appropriate complex
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numbers, such as those that arise naturally in the theory of half-integer weight modular
forms.
In this section, we proveTheorem1.2 and Proposition 1.4, the first of which in particular

establishes the quantummodularity of the functionsVmn.We begin by defining form ∈ T
the numbers

	m :=
⎧
⎨

⎩
2, m = 1, 3, 5,

1, m = 2, 4, 6,
am :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

8, m = 1, 2,

3, m = 3, 6,

24, m = 4,

12, m = 5,

bm :=
⎧
⎨

⎩

am
2 , m = 1, 2, 4, 5,

2am, m = 3, 6,
cm :=

⎧
⎨

⎩
am, m = 1, 2, 4, 5,

2am, m = 3, 6,

and let 	4′ = 	4′′ := 1, b4′ = b4′′ := 12, and a4′ = a4′′ = 24. We define the following
groups

G12, G15, G22, G26 := 〈( 1 0
2 1

)
,
( 1 4
0 1

)〉 ⊂ �0(2) ∩ �0(4),

G13, G14 , G17, G18, G23, G24 , G27
G28, G35, G36, G4n, G55, G56, G65, G66

:= 〈( 1 0
2 1

)
,
( 1 12
0 1

)〉 ⊂ �0(2) ∩ �0(12),

G32, G33, G34 , G37, G52, G53
G57, G58, G62, G63, G64 , G68

:= 〈( 1 0
2 1

)
,
( 1 6
0 1

)〉 ⊂ �0(2) ∩ �0(6).

The sets Gm1 are as defined in Theorem 4.2, and the sets G4n above are defined for any
admissible n whenm equals 4. We also define the constants

κ1n :=
⎧
⎨

⎩
1, n ∈ {2, 5},
3, n ∈ {3, 4, 7, 8},

κ2n :=
⎧
⎨

⎩
1, n ∈ {2, 6},
3, n ∈ {3, 4, 7, 8},

κ3n :=
⎧
⎨

⎩
1, n ∈ {2, 3, 4, 7},
2, n ∈ {5, 6},

κ5n :=
⎧
⎨

⎩
1, n ∈ {2, 3, 7, 8},
2, n ∈ {5, 6},

κ6n :=
⎧
⎨

⎩
1, n ∈ {2, 3, 4, 8},
2, n ∈ {5, 6},

as well as κm1 = κ4n = κ4′n = κ4′′n := 1 for any admissible pair (m, 1), (4, n), (4′, n) or
(4′′, n). We recall that for r ∈ Z, we letMr :=

( 1 0
r 1

)
.

In Sect. 5.1, we first sketch the general proof of Theorem 1.2 when m ∈ T and n = 1,
and then provide details for the case when (m, n) = (1, 1). After establishing the result for
these pairs (m, n), in Sect. 5.2, we deduce the result for all remaining pairs (m, n). In Sect.
5.3, we prove Proposition 1.4.

5.1 Proof of Theorem 1.2 for (m, n) = (m, 1)

General Proof of Theorem 1.2 when m ∈ T, n = 1 For r ∈ N we have Mr = ST−rS−1,
where S = ( 0 −1

1 0
)
and T = ( 1 1

0 1
)
, and we define τr := T−rS−1τ = −1/τ − r. Using

the fact that Mrτ = Sτr , we find by straightforward but lengthy calculations using the
expressions for Vm1 given in (34) (and the Appendix) combined with Lemma 2.3 that
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Vm1(M	mτ ) = ζ
2−	m
8 (	mτ + 1)

1
2Vm1(τ ) + Im(τ ) + Jm(τ ). (55)

The functions Im and Jm are defined byMordell integrals h(z; τ ), which we then simplify
to Eichler integrals of weight 3/2 unary theta functions ga,b, using either Theorem 2.7 (for
m = 2, 4, 6) or Lemma 2.8 (for m = 1, 3, 5). We summarize these facts in the following
Table 2.
For τ ∈ H, the transformation law in part (i) of Theorem 1.2 when m ∈ {1, 3, 5} and

n = 1, and the transformation law in part (ii) of Theorem 1.2 whenm ∈ {2, 4, 6} and n = 1
(both of which pertain to Vm1(M	mτ ), m ∈ T ) now follow from (55), Table 2, and Lemma
2.10. The transformation law in part (i) of Theorem 1.2 for τ ∈ H whenm ∈ {2, 4, 6} and
n = 1 follows after a short calculation by iterating the transformation law given in part
(ii), applying Lemma 2.6, and simplifying.
The transformation law (under τ → τ + bm) in part (iii) of Theorem 1.2 follows for

τ ∈ H by a direct calculation using Lemma 2.3.
Having established parts (i), (ii), and (iii) of Theorem 1.2 for τ ∈ H for n = 1, we have

continuation to τ = x ∈ Sm1\{− 1
2 } in part (i), to τ = x ∈ Sm1\{−1} in part (ii), and to

x ∈ Sm1 in part (iii), by Theorem 4.2 and the argument given in Sect. 4. As argued in
[4,6,13,29,30], for example, the integrals appearing in parts (i) and (ii) of Theorem 1.2 are
real analytic functions, except at −1/2 and −1 (respectively). �

Table 2 Mordell and Eichler integrals Im andJm

I1(τ ) := − ζ8

2i
e
(

1
8τ

) √−iτ2 h
(

τ2
2 + 1

4 ; τ2
)

= i

2

√
2τ + 1

∫ 0

1
2

g 1
4 ,0

(u)
√−i(u + τ )

du + i

2

√−iτ2,

J1(τ ) := 1
2i
q− 1

32
√
2τ + 1 h

(
τ
4 − 1

2 ; τ
)

= i

2

√
2τ + 1

∫ i∞

0

g 1
4 ,0

(u)
√−i(u + τ )

du − i

2

√−iτ2 ,

I2(τ ) := 1
2

√−iτ1 h
(
1
4 ; τ1

)
= i

2

√
τ + 1

∫ 0

1

g 1
4 ,

1
2
(u)

√−i(u + τ )
du,

J2(τ ) := −ζ8

2
q− 1

32
√

τ + 1 h
(

τ
4 ; τ

) = i

2

√
τ + 1

∫ i∞

0

g 1
4 ,

1
2
(u)

√−i(u + τ )
du,

I3(τ ):= − ζ6

2i
e
(

1
8τ

)√−iτ2 h
(

τ2
2 + 1

6 ; τ2
)

= i

2

√
2τ + 1

∫ 0

1
2

g 1
3 ,0

(u)
√−i(u + τ )

du + i

2

√−iτ2 ,

J3(τ ) := 1
2i
q− 1

72
√
2τ + 1 h

(
τ
6 − 1

2 ; τ
)

= i

2

√
2τ + 1

∫ i∞

0

g 1
3 ,0

(u)
√−i(u + τ )

du − i

2

√−iτ2 ,

I4(τ ) := 1
2

√−iτ1
(
h

(
5
12 ; τ1

)
+ h

(
1
12 ; τ1

))
= iζ8

2

√
τ + 1

∫ 0

1

ζ−1
24 g 1

12 ,
1
2
(u) + ζ−5

24 g 5
12 ,

1
2
(u)

√−i(u + τ )
du,

J4(τ ) := −ζ8

2

√
τ + 1

(
q

−25
288 h

(
5τ
12 ; τ

)
+ q

−1
288 h

(
τ
12 ; τ

)) = iζ8
2

√
τ + 1

∫ i∞

0

ζ−1
24 g 1

12 ,
1
2
(u) + ζ−5

24 g 5
12 ,

1
2
(u)

√−i(u + τ )
du,

I5(τ ) := − ζ−1
6

2
e
(

1
8τ

) √−iτ2 h
(

τ2
2 + 1

3 ; τ2
)

= i

2

√
2τ + 1

∫ 0

1
2

g 1
6 ,0

(u)
√−i(u + τ )

du + i

2

√−iτ2 ,

J5(τ ) := 1
2i
q

−1
18

√
2τ + 1 h

(
τ
3 − 1

2 ; τ
)

= i

2

√
2τ + 1

∫ i∞

0

g 1
6 ,0

(u)
√−i(u + τ )

du − i

2

√−iτ2 ,

I6(τ ) := 1
2

√−iτ1 h
(
1
6 ; τ1

)
= iζ−1

24

2

√
τ + 1

∫ 0

1

g 1
3 ,

1
2
(u)

√−i(u + τ )
du,

J6(τ ) := 1
2i

ζ−1
8 q− 1

72
√

τ + 1 h
(

τ
6 ; τ

) = iζ−1
24

2

√
τ + 1

∫ i∞

0

g 1
3 ,

1
2
(u)

√−i(u + τ )
du,
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Detailed Proof of Theorem 1.2 for (m, n) = (1, 1) As summarized in the Appendix or (34),
we may write

V11(τ ) = −q− 1
32 μ(τ/4 + 1/2, τ/2; τ ). (56)

Thus, we have

V11 (M2τ ) = −e
(

− 1
32

M2τ

)
μ

(
Sτ2
4

+ 1
2
,
Sτ2
2

; Sτ2

)

= −e
(

− 1
32

M2τ

)
e
(

− 1
2τ2

(
1
4

+ τ2
2

)2
)

× √−iτ2
(

−μ

(
−1
4

+ τ2
2
,−1

2
; τ2

)
+ 1

2i
h

(
1
4

+ τ2
2
; τ2

))

= ζ8e
(

1
8τ

)√−iτ2μ
(

−1
4

+ τ2
2
,−1

2
; τ2

)
+ I1(τ ), (57)

where

I1(τ ) := − 1
2i

ζ8e
(

1
8τ

) √−iτ2h
(

τ2
2

+ 1
4
; τ2

)
.

Here, we have used Lemma 2.3(6). Next, recalling that τ2 = S−1τ − 2, we (repeatedly)
apply Lemma 2.3(5) followed by a second application of Lemma 2.3(6), as well as Lemma
2.3(1, 3), and find after some simplification that (57) equals

(2τ + 1)
1
2V11(τ ) + I1(τ ) + J1(τ ), (58)

where

J1(τ ) := 1
2i
e
(
− τ

32

)
(2τ + 1)

1
2 h

(
τ

4
− 1

2
; τ

)
.

We re-write I1(τ ) using part (ii) of Lemma 2.8, and obtain after some simplification that
I1(τ ) equals

−1
2
√−iτ2

∫ 0

1
2

g1, 14
(
2 − 1

u
)

√
i(u−1 + τ−1)

du
u2

+ i
2
√−iτ2

= −1
2
√−iτ2

∫ 0

1
2

g1, 14
(− 1

u
)

√
i(u−1 + τ−1)

du
u2

+ i
2
√−iτ2

= −1
2
√−iτ2(−i)

3
2

∫ 0

1
2

g 3
4 ,1

(u)
√
i(u−1 + τ−1)

du
u

1
2

+ i
2
√−iτ2

= −1
2
√
iτ2τ (−i)

3
2

∫ 0

1
2

g 3
4 ,1

(u)
√−i(u + τ )

du + i
2
√−iτ2

= 1
2
√
2τ + 1

∫ 0

1
2

g 3
4 ,1

(u)
√−i(u + τ )

du + i
2
√−iτ2 (59)

where we have used Lemma 2.6. We also re-write J1(τ ) using part (iii) of Lemma 2.8, and
obtain after some simplification that J1(τ ) equals

1
2
√
2τ + 1

∫ i∞

0

g 3
4 ,1

(u)
√−i(u + τ )

du − i
2
√−iτ2. (60)
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Next, we re-write g3/4,1(z) = ig1/4,0(τ ) = i
4E1(z/32), where we have used Lemma 2.6 and

Lemma 2.10. Combining this with (58), (59) and (60) proves the first transformation law
(under τ → τ/(2τ + 1)) given in part (i) of Theorem 1.2 for τ ∈ H.
For the second transformation law (under τ → τ + 4) in part (iii) of Theorem 1.2, we

again use Lemma 2.3. From (56), we have

V11(τ + 4) = −ζ−1
8 q

1
32 μ

(
τ

4
+ 1 + 1

2
,
τ

2
+ 2, τ + 4

)

= −ζ−1
8 q

1
32 μ

(
τ

4
+ 1

2
,
τ

2
, τ

)

= ζ−1
8 V11(τ ),

as desired.We have continuation to τ = x ∈ S11 \{− 1
2 } by Theorem 4.2 and the argument

in Sect. 4 . �

5.2 Proof of Theorem 1.2 for n �= 1

To prove the theorem in the remaining cases, we establish Lemma 5.1 below, which shows
that the auxiliary functionsFmn, defined in (4.1), are weakly holomorphic modular forms,
and provides explicit transformation properties.

Lemma 5.1 The functions Fmn are weakly holomorphic modular forms of weight 1/2. In
particular, for τ ∈ H, the following are true.

(i) For m ∈ T ′ \ {4}, for each admissible n, we have that

Fmn(τ ) + i	m (2τ + 1)−
1
2Fmn

(
τ

2τ + 1

)
= 0.

(ii) For m ∈ T ′ \ {4}, for each admissible n, we have that

Fmn(τ ) − ζ κmn
am Fmn(τ + κmnbm) = 0.

We postpone the proof of Lemma 5.1 until the end of this section, and first prove
Theorem 1.2 for the remaining functions Vmn (i.e. n �= 1).

Proof of Theorem 1.2 for n �= 1We begin by re-writing the functions Vmn using (4.1) and
(4.1), which we previously established. Note that Fm1(τ ) is identically equal to zero for
each m ∈ T ′ \ {4}. We next use the fact that for fixed m and each admissible n, we have
that Smn ⊆ Sm1 and Gmn ⊆ Gm1. Previously, in Sect. 4, we showed that if x ∈ Sm1, then
Mx ∈ Sm1 for any M ∈ Gm1. A nearly identical argument shows that for fixed m and
each admissible n, that if x ∈ Smn, then Mx ∈ Smn for any M ∈ Gmn. Thus, for fixed m
and each admissible n (n �= 1), the quantum modular transformation properties given
in parts (i) and (iii) of Theorem 1.2 for the functions Vmn with n �= 1 now follow from
the transformation properties established in Sect. 5.1 for the functions Vm1 in Theorem
1.2 restricted to the subsets Smn ⊆ Sm1 and the subgroups Gmn ⊆ Gm1, combined with
Lemmas 5.1 and 4.5. This concludes the proof of Theorem 1.2 in the remaining cases
(n �= 1). �

Proof of Lemma 5.1 Proof of part (i) The proof of part (i) of Lemma 5.1 makes use of
Lemmas 2.1 and 2.2. We divide our proof into six cases, corresponding to six possible
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values ofm. Form = 1, we give an explicit proof for each admissible n. For the remaining
cases (m ∈ {2, 3, 4′, 4′′, 5, 6}), we provide a sketch of proof for brevity’s sake, as the proofs in
these cases are nearly identical to the case m = 1. To begin, we list some transformation
properties of certain specialized Jacobi ϑ-functions under M2 := ( 1 0

2 1
)
which we will

make use of:

ϑ

(
αM2τ + 1

2
;M2τ

)
= −iq− 1

2−α(2τ + 1)
1
2 e

((
(α + 1)τ + 1

2
)2

2τ + 1

)
ϑ

(
ατ + 1

2
; τ

)
,

(61)

ϑ (αM2τ ;M2τ ) = −i(2τ + 1)
1
2 e

(
(ατ )2

2τ + 1

)
ϑ (ατ ; τ ) , (62)

where α ∈ C. To establish (61) and (62), we have used Lemma 2.2, and the fact that
ψ3(M2) = −i.

Casem = 1. We have by definition that

F1n(τ ) := −iq− 1
32

η3(τ )ϑ
(

τ
2 + u(1n)τ ; τ

)
ϑ

(
u(1n)τ − τ

4 − 1
2 ; τ

)

ϑ
(

τ
4 + 1

2 ; τ
)
ϑ

(
τ
2 ; τ

)
ϑ(u(1n)τ ; τ )ϑ(v(1n)τ ; τ )

.

Using transformation properties from (13), (18), (61), and (62), we find after some straight-
forward calculations that

F1n(M2τ ) = i(2τ + 1)
1
2 ρ1n(M2)F1n(τ ), (63)

where

ρ12(M2) := q
1
32+ 5

4 e
(

1
2τ + 1

(
−τ

32
+

(
3τ
4

)2
+

(
τ + 1

2

)2
−

(
5τ
4

+ 1
2

)2

−
(
3τ
2

+ 1
2

)2
−

(τ

2

)2 −
(τ

4

)2
))

,

ρ13(M2) := q
1
32+ 1

4 e
(

1
2τ + 1

(
−τ

32
+

(
19τ
12

+ 1
2

)2
+

(τ

6

)2 −
(
5τ
4

+ 1
2

)2

−
(τ

2

)2 −
(τ

3

)2 −
(
13τ
12

+ 1
2

)2
))

,

ρ14(M2) := q
1
32+ 11

12 e
(

1
2τ + 1

(
−τ

32
+

(
7τ
12

)2
+

(
7τ
6

+ 1
2

)2
−

(
5τ
4

+ 1
2

)2

−
(τ

2

)2 −
( τ

12

)2 −
(
4τ
3

+ 1
2

)2
))

,

ρ15(M2) := q
1
32+ 1

4 e
(

1
2τ + 1

(
−τ

32
+

(
3τ
2

+ 1
2

)2
−

(
5τ
4

+ 1
2

)2

−
(τ

2

)2 −
(

τ + 1
2

)2
))

,

ρ17(M2) := q
1
32+ 5

12 e
(

1
2τ + 1

(
−τ

32
+

(
17τ
12

+ 1
2

)2
+

(τ

3

)2

−
(
5τ
4

+ 1
2

)2
−

(τ

2

)2 −
(
13τ
12

+ 1
2

)2
−

(τ

6

)2
))

,
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ρ18(M2) := q
1
32+ 7

12 e
(

1
2τ + 1

(
−τ

32
+

(
5τ
12

)2
+

(
4τ
3

+ 1
2

)2
−

(τ

2

)2 −
( τ

12

)2

−
(
5τ
4

+ 1
2

)2
−

(
7τ
6

+ 1
2

)2
))

.

After simplifying, one finds that ρ1n(M2) = −i for each admissible n. Using this fact,
Lemma 5.1 follows from (63) for each F1n.

Casem ∈ {2, 3, 4′, 4′′, 5, 6}. We proceed as above in the case m = 1. Using transforma-
tion properties from (61), (62), and (18), we find after some straightforward calculations
that

Fmn(M2τ ) = i(2τ + 1)
1
2 ρmn(M2)Fmn(τ ), (64)

where for any admissible n,

ρmn(M2) =
⎧
⎨

⎩
1, m ∈ {2, 4′, 4′′, 6},
−i, m ∈ {3, 5}.

For example, for (m, n) ∈ {(2, 2), (2, 6), (3, 4), (4′, 2), (4′′, 7), (5, 6), (6, 2)}, we have that

ρ22(M2) := q
1
32 e

(
1

2τ + 1

(
−τ

32
+

(
7τ
4

+ 1
2

)2
+

(
τ + 1

2

)2

−
(τ

4

)2−
(τ

2

)2−
(
3τ
2

+ 1
2

)2
−

(
5τ
4

+ 1
2

)2
))

= 1,

ρ26(M2) := q
1
32− 1

2 e
(

1
2τ + 1

(
−τ

32
+

(
3τ
2

+ 1
2

)2
−

(τ

4

)2 −
(τ

2

)2

−
(

τ + 1
2

)2
))

= 1,

ρ34(M2) := q
1
72+1e

(
1

2τ + 1

(
−τ

72
+

(
2τ
3

)2
+

(
7τ
6

+ 1
2

)2
−2

(
4τ
3

+ 1
2

)2
−

(τ

2

)2

−
(τ

6

)2))
= −i,

ρ4′2(M2) := q
25
288 e

(
1

2τ + 1

(
−25τ
288

+
(
19τ
12

+ 1
2

)2
+

(
τ + 1

2

)2
−

( τ

12

)2 −
(τ

2

)2

−
(
13τ
12

+ 1
2

)2
−

(
3τ
2

+ 1
2

)2
))

=1,

ρ4′′7(M2) := q
1

288 e
(

1
2τ + 1

(
−1τ
288

+
(
7τ
12

)2
+

(τ

3

)2−
(
5τ
12

)2

−
(τ

2

)2 −
( τ

12

)2−
(τ

6

)2))
= 1,

ρ56(M2) := q
1
18+ 2

3 e
(

1
2τ + 1

(
−τ

18
+

(
5τ
12

)2
−

(
7τ
6

+ 1
2

)2

−
(τ

2

)2 −
( τ

12

)2))
= −i,
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ρ62(M2) := q
1
72 e

(
1

2τ + 1

(
−τ

72
+

(
11τ
6

+ 1
2

)2
+

(
τ + 1

2

)2

−
(τ

3

)2−
(τ

2

)2−
(
3τ
2

+ 1
2

)2
−

(
4τ
3

+ 1
2

)2
))

=1.

Proof of part (ii) The proof in this case also follows by direct calculations using the defini-
tion of the functions Fmn, as well the transformations

η(τ + b) = ζ b
24η(τ ), ϑ(z + a; τ + b) = (−1)aζ b

8 ϑ(z; τ ), (65)

which hold for any a, b ∈ Z, and follow from (13), (18), and (19). We provide details in the
casesm ∈ {1, 2, 3, 6} and leave the remaining casesm ∈ {4′, 4′′, 5} to the reader for brevity,
as the proofs follow in a similar manner.

Case m ∈ {1, 2}. In this case, bm = 4, am = 8, and tm = −1/32. Using (65) and a direct
calculation, we find that the portion of Fmn independent of ϑ-functions satisfies

iwmη3(τ + κmnbm)e2π itm(τ+κmnbm) = −ζ−κmn
am · iwmη3(τ )qtm . (66)

Thus, it suffices to show that under τ �→ τ +κmnbm, the functionsFmn(τ )/(iwmη3(τ )qtm ),
which are quotients of ϑ-functions, map to −Fmn/(iwmη3(τ )qtm ).We compute using the
definitions of u(mn)

τ and v(mn)
τ that

u(1n)
τ+κ1nb1 =

⎧
⎨

⎩
u(1n)τ ± 1, n ∈ {2, 3, 4, 7, 8},
u(1n)τ , n = 5,

v(1n)
τ+κ1nb1 =

⎧
⎪⎪⎨

⎪⎪⎩

v(1n)τ + 4, n ∈ {3, 4},
v(1n)τ + 2, n ∈ {2, 7, 8},
v(1n)τ + 1, n = 5,

u(2n)
τ+κ2nb2 =

⎧
⎨

⎩
u(2n)τ ± 1, n ∈ {2, 3, 4, 7, 8},
u(2n)τ , n = 6,

v(2n)
τ+κ2nb2 =

⎧
⎪⎪⎨

⎪⎪⎩

v(2n)τ + 4, n ∈ {3, 4},
v(2n)τ + 2, n ∈ {2, 7, 8},
v(2n)τ + 1, n = 6,

u(11)
τ+κ1nb1 =

⎧
⎨

⎩
u(11)τ + 3, n ∈ {3, 4, 7, 8},
u(11)τ + 1, n ∈ {2, 5},

u(21)
τ+κ2nb2 =

⎧
⎨

⎩
u(21)τ + 3, n ∈ {3, 4, 7, 8},
u(21)τ + 1, n ∈ {2, 6}.

The claim now follows after combining the above with the transformation for the ϑ-
function given in (65).

Casem ∈ {3, 6}. In this case, bm = 6, am = 3, and tm = −1/72. In this case, analogous to
(66), we obtain

iwmη3(τ + κmnbm)e2π itm(τ+κmnbm) = ζ−κmn
am · iwmη3(τ )qtm .

Thus, it suffices to show that under the functions Fmn(τ )/(iwmη3(τ )qtm ), which are quo-
tients of ϑ-functions, remain invariant under τ �→ τ + κmnbm. Using the definititions of
u(mn)

τ and v(mn)
τ , we find that
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u(3n)
τ+κ3nb3 =

⎧
⎪⎪⎨

⎪⎪⎩

u(3n)τ + 2, n = 2,

u(3n)τ + 1, n ∈ {3, 4, 5, 6},
u(3n)τ , n = 7,

v(3n)
τ+κ3nb3 =

⎧
⎪⎪⎨

⎪⎪⎩

v(3n)τ + 3, n ∈ {2, 5, 6},
v(3n)τ + 2, n ∈ {3, 4},
v(3n)τ + 1, n = 7,

u(6n)
τ+κ6nb6 =

⎧
⎪⎪⎨

⎪⎪⎩

u(6n)τ + 2, n = 2,

u(6n)τ + 1, n ∈ {3, 4, 5, 6},
u(6n)τ , n = 8,

v(6n)
τ+κ6nb6 =

⎧
⎪⎪⎨

⎪⎪⎩

v(6n)τ + 3, n ∈ {2, 5, 6},
v(6n)τ + 2, n ∈ {3, 4},
v(6n)τ + 1, n = 8,

u(31)
τ+κ3nb3 =

⎧
⎨

⎩
u(31)τ + 2, n ∈ {2, 3, 4, 7},
u(31)τ + 4, n ∈ {5, 6},

u(61)
τ+κ6nb6 =

⎧
⎨

⎩
u(61)τ + 2, n ∈ {2, 3, 4, 8},
u(61)τ + 4, n ∈ {5, 6}.

The claim now follows after combining the above with the transformation for the ϑ-
function given in (65). �

5.3 Proof of Proposition 1.4

We follow amethod of proof and argument originally due toZagier in [30], whichwas later
generalized in [4], and used also in [12], for example; we refer the reader to these sources
for more explicit details, and provide a detailed sketch of proof here. The functions Em
are modular forms of weight 3/2, and satisfy, for all τ ∈ H and γ = ( a b

c d
) ∈ Gm ⊆ SL2(Z),

the transformation

Em(γ τ ) = νm(γ )(cτ + d)
3
2 Em(τ ). (67)

Here, νm andGm are suitablemultipliers and subgroups (respectively), and canbe explicitly
determined using the definitions of the functions Em. We define the function E∗

m(−τ )
(τ ∈ H) by

E∗
m(−τ ) :=

∫ i∞

−τ

Em(u)√
u + τ

du.

Using (67), it is not difficult to show for all τ ∈ H and γ ∈ Gm that

E∗
m(−τ ) − (−cτ + d)−

1
2 ν−1

m (γ )E∗
m(γ (−τ )) =

∫ i∞

− d
c

Em(u)√
u + τ

du. (68)

Under a change of variable in the integrand, with an appropriate choice of matrix γ ,
up to multiplication by a constant (which can be explicitly determined), we find that
the transformations given in (68) for the functions E∗

m
(−2τ/c2m

)
are identical to the

transformations given for the functions Vmn(x) in Theorem 1.2 for x ∈ Smn ⊆ Q, as
τ = x+ iy → x from the upper half-plane (as y → 0+), or equivalently, as z = −2τ/c2m →
−2x/c2m from the lower half-plane.
On the other hand, we also have that the asymptotic expansions of E∗

m(−τ ) and Ẽm(−τ )
agree at rational numbers r/s, that is, with τ = r/s + iy ∈ H, as y → 0+; this fact
is established more generally in [4, Proposition2.1]. Thus, the functions Ẽm inherit the
transformationproperties satisfiedby the functionsE∗

m at appropriate rationals, andhence,
transform (up to the aforementioned change of variable, up to a constant multiple) like
the functions Vmn in Theorem 1.2, as claimed.
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6 Corollaries
In this section, we prove Corollary 1.3, in which we evaluate Eichler integrals of eta–theta
functions Em appearing in Theorem 1.2 as finite q-hypergeometric sums, and establish
related curious algebraic identities. We define form ∈ {1, 2, 3, 5, 6} the numbers dm by

dm :=

⎧
⎪⎪⎨

⎪⎪⎩

3, m = 1, 2,

1, m = 3, 6,

5, m = 5.

For h/k ∈ Q with gcd(h, k) = 1, we define for positive integersm the numbers

Hm = Hm(h, k) :=
⎧
⎨

⎩
h, mh + k > 0,

−h, mh + k < 0
, (69)

Km = Km(h, k) := |mh + k|.

Proof of Corollary 1.3 We first establish (8) and (10). To do so, we begin with parts (i) and
(ii) of Theorem 1.2 in the case n = 1. We then use Lemma 4.1 to re-write the functions
Vm1 in terms of the functions fm and g2. By Lemma 4.4, we have that the functions fm
vanish at rationals in Sm1. From Lemma 4.3, we also have that the remaining functions in
Lemma 4.1, defined using the function g2, are defined at rationals in Sm1. Moreover, the
proof of Lemma 4.3 more specifically reveals that the functions defined using the infinite
sums g2 in Lemma 4.1 in fact truncate, and become finite sums. Identities (8) and (10) of
Corollary 1.3 then follow by a direct calculation using the definition of the functions Fh,k
given in (7), and the numbers Hm and Km in (69). The claimed identities in (9) and (11)
follow similarly. We begin with part (iii) of Theorem 1.2 in the case n = 1, then apply
Lemmas 4.1, 4.4, and 4.3. �
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Appendix
Here we tabulate all of our mock modular forms Vmn, for any admissible pair (m, n), as
originally defined as quotients of Lambert-type series and the eta–theta functions en, and
also in terms of Zwegers’ μ-function. These functions have normalized shadow Em(τ ),
meaning their shadows are equal to a constant multiple of the function Em(2τ/c2m), where
cm is defined in Sect. 5. We note that embedded in these tables are the definitions of the
constants wm, tm, u(mn)

τ , and v(mn)
τ (see Tables 3, 4, 5, 6, 7, 8).
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Table 3 Mock theta functionswith normalized shadow E1(τ), where u(1n)τ − v(1n)τ = − 1
4τ + 1

2

V1n(τ) Series w1qt1μ
(
u(1n)

τ , v(1n)τ ; τ
)

V11(τ )
q−9/32

e1(τ/2)

∑

n∈Z

(−1)nq(n+1)2/2

1 + qn+1/4 −q−1/32μ( τ
4 + 1

2 ,
τ
2 ; τ )

V12(τ )
−q−9/32

e2(τ/2)

∑

n∈Z

q(n+1)2/2

1 − qn+1/4 −q−1/32μ( τ
4 ,

τ
2 − 1

2 ; τ )

V13(τ )
q−9/32

e3(τ/72)

∑

n∈Z

(−1)nq(n+5/6)2/2

1 + qn+1/12 −q−1/32μ( τ
12 + 1

2 ,
τ
3 ; τ )

V14(τ )
−q−9/32

e4(τ/72)

∑

n∈Z

q(n+5/6)2/2

1 − qn+1/12 −q−1/32μ( τ
12 ,

τ
3 − 1

2 ; τ )

V15(τ )
q−9/32

e5(τ/32)

∑

n∈Z

(−1)nq(n+3/4)2/2

1 + qn
−q−1/32μ( 12 ,

τ
4 ; τ )

V16(τ ) — −q−1/32μ(0, τ
4 − 1

2 ; τ )

V17(τ )
q−9/32

e7(τ/18)

∑

n∈Z

(−1)nq(n+2/3)2/2

1 + qn−1/12 −q−1/32μ(− τ
12 + 1

2 ,
τ
6 ; τ )

V18(τ )
−q−9/32

e8(τ/18)

∑

n∈Z

q(n+2/3)2/2

1 − qn−1/12 −q−1/32μ(− τ
12 ,

τ
6 − 1

2 ; τ )

Table 4 Mock theta functions with normalized shadow E2(τ), where u(2n)τ − v(2n)τ = − 1
4τ

V2n(τ) Series w2qt2μ
(
u(2n)

τ , v(2n)τ ; τ
)

V21(τ )
−q−9/32

e1(τ/2)

∑

n∈Z

(−1)nq(n+1)2/2

1 − qn+1/4 iq−1/32μ( τ
4 ,

τ
2 ; τ )

V22(τ )
q−9/32

e2(τ/2)

∑

n∈Z

q(n+1)2/2

1 + qn+1/4 iq−1/32μ( τ
4 − 1

2 ,
τ
2 − 1

2 ; τ )

V23(τ )
−q−9/32

e3(τ/72)

∑

n∈Z

(−1)nq(n+5/6)2/2

1 − qn+1/12 iq−1/32μ( τ
12 ,

τ
3 ; τ )

V24(τ )
q−9/32

e4(τ/72)

∑

n∈Z

q(n+5/6)2/2

1 + qn+1/12 iq−1/32μ( τ
12 − 1

2 ,
τ
3 − 1

2 ; τ )

V25(τ ) — iq−1/32μ(0, τ
4 ; τ )

V26(τ )
q−9/32

e6(τ/32)

∑

n∈Z

q(n+3/4)2/2

1 + qn
iq−1/32μ(− 1

2 ,
τ
4 − 1

2 ; τ )

V27(τ )
−q−9/32

e7(τ/18)

∑

n∈Z

(−1)nq(n+2/3)2/2

1 − qn−1/12 iq−1/32μ(− τ
12 ,

τ
6 ; τ )

V28(τ )
q−9/32

e8(τ/18)

∑

n∈Z

q(n+2/3)2/2

1 + qn−1/12 iq−1/32μ(− τ
12 − 1

2 ,
τ
6 − 1

2 ; τ )

Table 5 Mock theta functionswith normalized shadow E3(τ), where u(3n)τ − v(3n)τ = − 1
6τ + 1

2

V3n(τ) Series w3qt3μ
(
u(3n)

τ , v(3n)τ ; τ
)

V31(τ )
q−2/9

e1(τ/2)

∑

n∈Z

(−1)nq(n+1)2/2

1 + qn+1/3 −q−1/72μ( τ
3 + 1

2 ,
τ
2 ; τ )

V32(τ )
−q−2/9

e2(τ/2)

∑

n∈Z

q(n+1)2/2

1 − qn+1/3 −q−1/72μ( τ
3 ,

τ
2 − 1

2 ; τ )

V33(τ )
q−2/9

e3(τ/72)

∑

n∈Z

(−1)nq(n+5/6)2/2

1 + qn+1/6 −q−1/72μ( τ
6 + 1

2 ,
τ
3 ; τ )

V34(τ )
−q−2/9

e4(τ/72)

∑

n∈Z

q(n+5/6)2/2

1 − qn+1/6 −q−1/72μ( τ
6 ,

τ
3 − 1

2 ; τ )

V35(τ )
q−2/9

e5(τ/32)

∑

n∈Z

(−1)nq(n+3/4)2/2

1 + qn+1/12 −q−1/72μ( τ
12 + 1

2 ,
τ
4 ; τ )

V36(τ )
−q−2/9

e6(τ/32)

∑

n∈Z

q(n+3/4)2/2

1 − qn+1/12 −q−1/72μ( τ
12 ,

τ
4 − 1

2 ; τ )

V37(τ )
q−2/9

e7(τ/18)

∑

n∈Z

(−1)nq(n+2/3)2/2

1 + qn
−q−1/72μ( 12 ,

τ
6 ; τ )

V38(τ ) — −q−1/72μ(0, τ
6 − 1

2 ; τ )
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Ta
b
le

6
M
o
ck

th
et
a
fu
n
ct
io
n
s
w
it
h
n
o
rm

al
iz
ed

sh
ad

o
w
E 4
(τ
),
w
h
er
e
u(

4′
n)

τ
−

v(
4n

)
τ

=
−5 2

τ
an

d
u(

4′
′ n
)

τ
−

v(
4n

)
τ

=
−

1 12
τ

V 4
n(

τ
)=

V 4
′ n
(τ
)+

V 4
′′ n
(τ
)

Se
ri
es

w 4
qt

′ 4
μ

( u(
4′
n)

τ
,v

(4
n)

τ
;τ

) +
w 4

qt
′′ 4
μ

( u(
4′

′ n
)

τ
,v

(4
n)

τ
;τ

)

V 4
1
(τ
)=

V 4
′ 1
(τ
)+

V 4
′′ 1
(τ
)

−q
−1

21
/
28
8

e 1
(τ

/
2)

∑ n∈
Z

(−
1)
n
q(
n+

1)
2
/
2

1
−

qn
+1

/
12

+
−q

−4
9/
28
8

e 1
(τ

/
2)

∑ n∈
Z

(−
1)
n
q(
n+

1)
2
/
2

1
−

qn
+5

/
12

iq
−2

5/
28
8
μ
(

τ 12
,τ 2

;τ
)+

iq
−1

/
28
8
μ
(5

τ 12
,τ 2

;τ
)

V 4
2
(τ
)=

V 4
′ 2
(τ
)+

V 4
′′ 2
(τ
)

q−
12
1/
28
8

e 2
(τ

/
2)

∑ n∈
Z

q(
n+

1)
2
/
2

1
+

qn
+1

/
12

+
q−

49
/
28
8

e 2
(τ

/
2)

∑ n∈
Z

q(
n+

1)
2
/
2

1
+

qn
+5

/
12

iq
−2

5/
28
8
μ
(

τ 12
−

1 2
,τ 2

−
1 2
;τ
)+

iq
−1

/
28
8
μ
(5

τ 12
−

1 2
,τ 2

−
1 2
;τ
)

V 4
3
(τ
)=

V 4
′ 3
(τ
)+

V 4
′′ 3
(τ
)

−q
−1

21
/
28
8

e 3
(τ

/
72
)

∑ n∈
Z

(−
1)
n
q(
n+

5/
6)
2
/
2

1
−

qn
−1

/
12

+
−q

−4
9/
28
8

e 3
(τ

/
72
)

∑ n∈
Z

(−
1)
n
q(
n+

5/
6)
2
/
2

1
−

qn
+1

/
4

iq
−2

5/
28
8
μ
(−

τ 12
,τ 3

;τ
)+

iq
−1

/
28
8
μ
(τ 4

,τ 3
;τ
)

V 4
4
(τ
)=

V 4
′ 4
(τ
)+

V 4
′′ 4
(τ
)

−q
−1

21
/
28
8

e 4
(τ

/
72
)

∑ n∈
Z

q(
n+

5/
6)
2
/
2

1
+

qn
−1

/
12

+
−q

−4
9/
28
8

e 4
(τ

/
72
)

∑ n∈
Z

q(
n+

5/
6)
2
/
2

1
+

qn
+1

/
4

iq
−2

5/
28
8
μ
(−

τ 12
−

1 2
,τ 3

−
1 2
;τ
)+

iq
−1

/
28
8
μ
(τ 4

−
1 2
,τ 3

−
1 2
;τ
)

V 4
5
(τ
)=

V 4
′ 5
(τ
)+

V 4
′′ 5
(τ
)

−q
−1

21
/
28
8

e 5
(τ

/
32
)

∑ n∈
Z

(−
1)
n
q(
n+

3/
4)
2
/
2

1
−

qn
−1

/
6

+
−q

−4
9/
28
8

e 5
(τ

/
32
)

∑ n∈
Z

(−
1)
n
q(
n+

3/
4)
2
/
2

1
−

qn
+1

/
6

iq
−2

5/
28
8
μ
(−

τ 6
,τ 4

;τ
)+

iq
−1

/
28
8
μ
(τ 6

,τ 4
;τ
)

V 4
6
(τ
)=

V 4
′ 6
(τ
)+

V 4
′′ 6
(τ
)

q−
12
1/
28
8

e 6
(τ

/
32
)

∑ n∈
Z

q(
n+

3/
4)
2
/
2

1
+

qn
−1

/
6

+
q−

49
/
28
8

e 6
(τ

/
32
)

∑ n∈
Z

q(
n+

3/
4)
2
/
2

1
+

qn
+1

/
6

iq
−2

5/
28
8
μ
(−

τ 6
−

1 2
,τ 4

−
1 2
;τ
)+

iq
−1

/
28
8
μ
(τ 6

−
1 2
,τ 4

−
1 2
;τ
)

V 4
7
(τ
)=

V 4
′ 7
(τ
)+

V 4
′′ 7
(τ
)

−q
−1

21
/
28
8

e 7
(τ

/
18
)

∑ n∈
Z

(−
1)
n
q(
n+

2/
3)
2
/
2

1
−

qn
−1

/
4

+
−q

−4
9/
28
8

e 7
(τ

/
18
)

∑ n∈
Z

(−
1)
n
q(
n+

2/
3)
2
/
2

1
−

qn
+1

/
12

iq
−2

5/
28
8
μ
(−

τ 4
,τ 6

;τ
)+

iq
−1

/
28
8
μ
(

τ 12
,τ 6

;τ
)

V 4
8
(τ
)=

V 4
′ 8
(τ
)+

V 4
′′ 8
(τ
)

q−
12
1/
28
8

e 8
(τ

/
18
)

∑ n∈
Z

q(
n+

2/
3)
2
/
2

1
+

qn
−1

/
4

+
q−

49
/
28
8

e 8
(τ

/
18
)

∑ n∈
Z

q(
n+

2/
3)
2
/
2

1
+

qn
+1

/
12

iq
−2

5/
28
8
μ
(−

τ 4
−

1 2
,τ 6

−
1 2
;τ
)+

iq
−1

/
28
8
μ
(

τ 12
−

1 2
,τ 6

−
1 2
;τ
)
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Table 7 Mock theta functionswith normalized shadow E5(τ), where u(5n)τ − v(5n)τ = − 1
3τ + 1

2

V5n(τ) Series w5qt5μ
(
u(5n)

τ , v(5n)τ ; τ
)

V51(τ )
q−25/72

e1(τ/2)

∑

n∈Z

(−1)nq(n+1)2/2

1 + qn+1/6 −q−1/18μ( τ6 + 1
2 ,

τ
2 ; τ )

V52(τ )
−q−25/72

e2(τ/2)

∑

n∈Z

q(n+1)2/2

1 − qn+1/6 −q−1/18μ( τ6 ,
τ
2 − 1

2 ; τ )

V53(τ )
q−25/72

e3(τ/72)

∑

n∈Z

(−1)nq(n+5/6)2/2

1 + qn
−q−1/18μ( 12 ,

τ
3 ; τ )

V54(τ ) — −q−1/18μ(0, τ
3 − 1

2 ; τ )

V55(τ )
q−25/72

e5(τ/32)

∑

n∈Z

(−1)nq(n+3/4)2/2

1 + qn−1/12 −q−1/18μ(− τ
12 + 1

2 ,
τ
4 ; τ )

V56(τ )
−q−25/72

e6(τ/32)

∑

n∈Z

q(n+3/4)2/2

1 − qn−1/12 −q−1/18μ(− τ
12 ,

τ
4 − 1

2 ; τ )

V57(τ )
q−25/72

e7(τ/18)

∑

n∈Z

(−1)nq(n+2/3)2/2

1 + qn−1/6 −q−1/18μ(− τ
6 + 1

2 ,
τ
6 ; τ )

V58(τ )
−q−25/72

e8(τ/18)

∑

n∈Z

q(n+2/3)2/2

1 − qn−1/6 −q−1/18μ(− τ
6 ,

τ
6 − 1

2 ; τ )

Table 8 Mock theta functions with normalized shadow E6(τ), where u(6n)τ − v(6n)τ = − 1
6τ

V6n(τ) Series w6qt6μ
(
u(6n)

τ , v(6n)τ ; τ
)

V61(τ )
−q−2/9

e1(τ/2)

∑

n∈Z

(−1)nq(n+1)2/2

1 − qn+1/3 iq−1/72μ( τ3 ,
τ
2 ; τ )

V62(τ )
q−2/9

e2(τ/2)

∑

n∈Z

q(n+1)2/2

1 + qn+1/3 iq−1/72μ( τ3 − 1
2 ,

τ
2 − 1

2 ; τ )

V63(τ )
−q−2/9

e3(τ/72)

∑

n∈Z

(−1)nq(n+5/6)2/2

1 − qn+1/6 iq−1/72μ( τ6 ,
τ
3 ; τ )

V64(τ )
q−2/9

e4(τ/72)

∑

n∈Z

q(n+5/6)2/2

1 + qn+1/6 iq−1/72μ( τ6 − 1
2 ,

τ
3 − 1

2 ; τ )

V65(τ )
−q−2/9

e5(τ/32)

∑

n∈Z

(−1)nq(n+3/4)2/2

1 − qn+1/12 iq−1/72μ( τ
12 ,

τ
4 ; τ )

V66(τ )
q−2/9

e6(τ/32)

∑

n∈Z

q(n+3/4)2/2

1 + qn+1/12 iq−1/72μ( τ
12 − 1

2 ,
τ
4 − 1

2 ; τ )

V67(τ ) — iq−1/72μ(0, τ
6 ; τ )

V68(τ )
q−2/9

e8(τ/18)

∑

n∈Z

q(n+2/3)2/2

1 + qn
iq−1/72μ(− 1

2 ,
τ
6 − 1

2 ; τ )
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