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Mock and mixed mock modular forms in the lower half-plane

Amanda Folsom

Abstract. We study mock and mixed mock modular forms in the lower
half-plane. In particular, our results apply to Zwegers’ three-variable
mock Jacobi form μ(u, v; τ), three-variable generalizations of the univer-
sal mock modular partition rank generating function, and the quantum
and mock modular strongly unimodal sequence rank generating function.
We do not rely upon the analytic properties of these functions; we es-
tablish our results concisely using the theory of q-hypergeometric series
and partial theta functions. We extend related results of Ramanujan,
Hikami, and prior work of the author with Bringmann and Rhoades, and
also incorporate more recent aspects of the theory pertaining to quantum
modular forms and the behavior of these functions at rational numbers
when viewed as functions of τ (or equivalently, at roots of unity when
viewed as functions of q).
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1. Introduction and statement of results. Historically, partial theta functions
have been a topic of interest within the theories of q-hypergeometric series
and partitions, as studied by a number of authors including Alladi, Andrews,
Berndt, Fine, Rogers, Ramanujan, and more [1–6,8,9,17,24]. For example, due
to Rogers, we have for |q| < 1 that

∞∑

n=0

(−1)nq
n(n+1)

2

(−q; q)n
=

∞∑

n=0

(−12
n

)
q

n2−1
24 , (1.1)

where
( ·

·
)

denotes the Kronecker symbol. The function on the left-hand side of
(1.1) is an example of a q-hypergeometric series, defined by using the q-pochha-
mmer symbol (a; q)n :=

∏n−1
j=0 (1 − aqj), (n ∈ N0). This function also admits a

combinatorial, partition theoretic interpretation due to work of Andrews [4],
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relating distinct parts to largest parts of partitions. The function on the right-
hand side of (1.1) is an example of a partial theta function, aptly named as it
resembles an ordinary (modular) theta function, save for the fact that it is a
sum only over the partial lattice of integers N0 as opposed to the full lattice
Z.

Despite their similarities to modular theta functions, a full theory of partial
theta functions has not been well understood. However, more recently, we
have begun to understand their relationships to mock modular and quantum
modular forms. To describe this, consider one of Ramanujan’s mock theta
functions from his last letter to Hardy defined by

f(q) :=
∞∑

n=0

qn2

(−q; q)2n
.

Similar to the left-hand side of (1.1), this function is a combinatorial q-hyperge-
ometric series, well known to carry information about partition ranks (see
(1.5)). More recently, due to fundamental work of Zwegers [27,28], we also
know how this function fits into the theory of modular forms: it is a mock
modular form, the holomorphic part of a harmonic Maass form [13], as are
all of Ramanujan’s original mock theta functions. Loosely speaking, harmonic
Maass forms transform like ordinary modular forms, but are non-holomorphic,
are annihilated by a certain Laplacian operator, and satisfy relaxed growth
conditions. With respect to partial theta functions, an interesting relationship
was given by Ramanujan in his “lost” notebook [3] when q is replaced by q−1.
That is, for |q| < 1,

f(q−1) = 2
∞∑

n=0

(−12
n

)
q

n2−1
24 − (−q; q)−2

∞
∞∑

n=0

(−1)nq
n(n+1)

2 . (1.2)

The identity in (1.2) shows how Ramanujan’s mock theta function f extends
to a function outside of the unit disk (|q| < 1 ⇔ |q−1| > 1), and there it can
be expressed in terms of two partial theta functions. Identities similar to (1.2)
have been studied more recently by Hikami [21], and in [10] in more generality.

The previous discussion begs the question of understanding these types
of functions on the boundary of the unit disk, since we are sometimes able to
understand functions like f(q) both inside and outside the unit disk. Indeed, we
have made recent progress in understanding this aspect as related to quantum
modular forms, newly defined by Zagier [26]; however, in hindsight, some of
the origins of this question date back to Ramanujan. To describe this in an
example, in his last letter to Hardy, Ramanujan made the claim that as q
tends radially from within the unit disk towards any even ordered 2k-th root
of unity ζ (on the boundary of the unit disk), then

lim
q→ζ

(f(q) − (−1)kb(q)) = O(1), (1.3)

where b(q) is an explicitly given weakly holmorphic modular form of weight
1/2 (when q = e2πiτ , τ ∈ H := {z ∈ C | Im(z) > 0}, up to multiplication by
q−1/24). Note that the even ordered roots of unity are exponential singularities
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of the mock theta function f(q). While Ramanujan’s claim can be verified using
later work of Watson [25], questions remained into the present day, such as
understanding the implied constants in (1.3) and understanding (1.3) within
a larger framework. Ono, Rhoades, and the author addressed these questions
in [18], and established the following more general result, where ζa

b is a fixed
root of unity, and q tends radially towards another suitable root of unity ζh

k

from within the unit disk (here hh′ ≡ −1 (mod k)):

lim
q→ζh

k

(
R (ζa

b ; q) − ζ−a2h′k
b2 C (ζa

b ; q)
)

= −(1 − ζa
b )(1 − ζ−a

b ) · U(ζa
b ; ζh

k ). (1.4)

This result is stated in terms of the two-variable q-hypergeometric combina-
torial generating functions

R(w; q) :=
∞∑

n=0

qn2

(wq; q)n(w−1q; q)n
=

∞∑

n=0

∑

m∈Z

N(m,n)wmqn, (1.5)

U(w; q) :=
∞∑

n=0

qn+1(wq; q)n(w−1q; q)n =
∞∑

n=0

∑

m∈Z

u(m,n)(−w)mqn, (1.6)

where N(m,n) is the number of partitions of n with rank m, and u(m,n) is the
number of strongly unimodal sequences of size n with rank m. The function
C(w; q), similarly, is the two-variable generating function for partition cranks.
Ramanujan’s claim (1.3) pertains to the special case ζa

b = −1. On one hand,
(1.4) can be interpreted as an asymptotic statement between combinatorial
generating functions. On the other hand, (1.4) admits a modular interpreta-
tion. Up to multiplication by a suitable q-power, due to work of Bringmann
and Ono [11], for roots of unity w, the function R(w; q) is a mock modular
form. Moreover, it is not difficult to show that when specialized appropriately,
C(w; q) is essentially an ordinary modular form. Recently, the authors in [14]
related the function U(w; q) (with q = e2πiτ ) to quantum modular forms [26],
which are like modular forms, but are defined for τ ∈ Q as opposed to τ ∈ H,
and exhibit a modular transformation property on (a subset of) Q up to an
error function, which should extend to a suitably continuous or analytic func-
tion in (a subset of) R [26]. Results from [12,22] later extended (1.4) from [18],
and we now know that a similar relationship among mock theta functions and
quantum modular forms exists even more generally.

In this paper, our goal is to study mock modular forms, in a general sense,
as functions of τ in the lower half-plane (equivalently, as functions of q = e2πiτ

outside of the unit disk). Despite the generally intricate analytic nature of
mock modular forms, we establish our results concisely using the theory of
q-hypergeometric series and partial theta functions. Our results extend results
in [3,10,21] to general mock and mixed mock modular forms, and incorporate
more recent aspects of the theory from [12,14,18,22] as discussed above per-
taining to the behavior of these functions at rational numbers (equivalently, at
roots of unity on the boundary of the unit disk). To this end we study three
three-variable functions. The first, μ(u, v; τ), due to Zwegers [28], is defined
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for τ ∈ H, and u, v ∈ C\(Zτ + Z):

μ(u, v; τ) :=
eπiu

ϑ(v; τ)

∑

n∈Z

e2πin(v+ 1
2 )q

n
2 (n+1)

1 − e2πiuqn
, (1.7)

where ϑ(v; τ) :=
∑

m∈Z
e2πi(m+ 1

2 )(v+ 1
2 )q

1
2 (m+ 1

2 )
2

and q = e2πiτ . This function
behaves like a mock Jacobi form, in that it may be completed by the addition
of a suitable non-holomorphic function, such that the resulting sum transforms
like a (non-holomorphic) modular Jacobi form. Upon suitable specializations
of parameters, the μ-function becomes a mock modular form. The μ-function
plays a ubiquitous role within the theory: Ramanujan’s original mock theta
functions, and a very large number of canonical examples and infinite fami-
lies of mock modular forms, can be written and studied in terms of μ (see,
for example, the comprehensive survey articles [23,26]). The second function
we study is a three-variable q-hypergeometric sum R(α, β; q) (|q| < 1) that
specializes to the mock modular partition rank generating function R(w; q) in
(1.5) when α = β−1 = w:

R(α, β; q) :=
∞∑

n=0

(αβ)nqn2

(αq; q)n(βq; q)n
.

The rank generating function R(w; q) is also essentially a universal mock theta
function in the sense of Gordon and McIntosh [20], meaning that many of Ra-
manujan’s original mock theta functions can be expressed in terms of R(w; q)
upon suitable choices of parameters, up to the addition of a modular form (see
also [10, Theorem 3.1]). The same is thus true for its generalization R(α, β; q).
The universal mock theta functions have recently been studied in the context
of this paper in the aforementioned works [12,22]. The third function we study
is a three-variable generalization of the quantum modular form U(w; q) in (1.6)
(|q| < 1):

U(α, β; q) :=
∞∑

n=0

(α; q)n(β; q)nqn.

That is, q U(wq;w−1q) = U(w; q). From U ,R, and μ, we also define compan-
ion functions by multiplying or dividing by certain infinite products. From
the perspective of modularity, these multiplications give rise to mixed mock
modular forms [16]. Precisely, we define

Uj(α, β; q) :=

{
U (α, β; q) (α; q)−1

∞ (β; q)−1
∞ if j = 1,

U(α, β; q) if j = 2,

Rj(α, β; q) :=

{
R (α, β; q) (α−1; q)−1

∞ (β−1; q)−1
∞ if j = 1,

R(α, β; q) if j = 2,

M(u, v; τ) := −iq
1
8 eπi(u+v)(e−2πiu; q)∞(e−2πiv; q)∞μ(u, v; τ),

where in the definition of M, we let q = e2πiτ . Here and throughout, we
define (a; q)∞ := limn→∞(a; q)n. In what follows, we show how to extend the
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functions μ, M, Rj , and Uj into the lower half-plane, using the following
q-hypergeometric series and partial theta functions:

χ(z; q) :=
∞∑

m=0

(−1)mzmq
m(m+1)

2 , X(z; q) :=
∞∑

n=0

(z
1
2 q

1
4 ; q

1
2 )nz

n
2 q

n
4

(−z
1
2 q

1
4 ; q

1
2 )n+1

,

S1(α, β; q) :=
∞∑

n=0

(α; q)n+1β
n, S3(α, β; q) := (1 − α)

∞∑

n=0

q
n2+n

2 (−αβ)n

(β; q)n+1
,

S2(α, β; q) :=
∞∑

n=0

(α; q)n+1

(β; q)n+1
(1 − αβq2n+1)(−αβ2)nq

3n2+n
2 . (1.8)

Analogously to the functions Rj and Uj (j ∈ {1, 2}), we also define functions
Xj , χj , and Sj,k (j ∈ {1, 2}, k ∈ {1, 2, 3}); their explicit definitions are given in
(2.4). We offer multiple different extensions of the aforementioned generalized
(mixed) mock and quantum modular forms into the lower half-plane using
the five functions in (1.8) in Theorems 1.1, 1.3, and 1.4 below. Proposition
1.2 pertains to evaluation at rationals or on the boundary of the unit disk
D := {q ∈ C | |q| < 1}, as does the remark following Theorem 1.4. Throughout,
we set D

∗ := D\{0}.

Theorem 1.1. Let τ ∈ H, and u, v ∈ C be such that Im(τ−u) > 0, Im(τ−v) > 0,
and u �= aτ + b, v �= cτ + d, (a, c ∈ N, b, d ∈ Z).

(i) If additionally Im(v) < 0 and u, v �∈ Zτ + Z, then for k ∈ {1, 2, 3}, we
have that

μ(u, v;−τ) = iq
1
8 e−πi(u+v)

(−(e2πi(−u+τ); e2πiτ )∞(e2πi(−v+τ); e2πiτ )∞

+ (1 − e−2πiv)S1,k(e2πiu, e2πiv; e2πiτ )
)
.

(ii) If additionally Im(v) < 0 then for k ∈ {1, 2, 3}, we have that

M(u, v;−τ) = −1 + (1 − e−2πiv)S2,k(e2πiu, e2πiv; e2πiτ ).

(iii) If additionally Im(u) < 0 and u, v �∈ Zτ + Z, then for k ∈ {1, 2, 3}, we
have that

μ(u, v;−τ) = ie
πiτ
4 e−πi(u+v)

(−(e2πi(−u+τ); e2πiτ )∞(e2πi(−v+τ); e2πiτ )∞

+ (1 − e−2πiu)S1,k(e2πiv, e2πiu; e2πiτ )
)
.

(iv) If additionally Im(u) < 0, then for k ∈ {1, 2, 3}, we have that

M(u, v;−τ) = −1 + (1 − e−2πiu)S2,k(e2πiv, e2πiu; e2πiτ ).

As discussed, it is of particular interest to understand these functions on
the boundary of the unit disk at roots of unity or, equivalently, at rational
numbers in-between the two half complex planes. To this end, we introduce
some notation, and let

S̃(α, β; q) := −1 + (1 − β−1)S2(α, β−1; q).

As shown in Theorem 1.1 (k = 2), the functions S̃(α, β; q) and S̃(β, α; q)
extend the mixed mock modular form M(u, v; τ) into the lower half of the
complex plane when α = e2πiu and β = e2πiv; the functions S̃ are themselves
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defined for |q| < 1 or, equivalently, τ ∈ H (q = e2πiτ ). However, one can
show that they are also defined—and can be explicitly evaluated as finite
sums—for certain roots of unity q or, equivalently, rational numbers τ ∈ Q.
We establish an extension to roots of unity on the unit circle or, equivalently,
to Q, in Proposition 1.2 below. To state it, we let b, s, k ∈ N, a, r, h ∈ Z,
with gcd(a, b) = gcd(r, s) = gcd(h, k) = 1. We let h be an integer such that
hh ≡ 1 (mod k). For a fixed pair (h, k) of integers satisfying the hypotheses
just given, suppose c ∈ Z, d ∈ N are integers with gcd(c, d) = 1, and suppose
d|k, that is, dd′ = k for some integer d′. Then there exists a smallest integer
Nc,d,h,k, 0 ≤ Nc,d,h,k ≤ k − 1, satisfying Nc,d,h,k ≡ −chd′ (mod k). This
number will play a role in Proposition 1.2 below, which features the function
S̃ from Theorem 1.1, with u → a/b, v → r/s, and τ → h/k.

Proposition 1.2. Assume the notation above. If b|k and s � k, then

S̃(ζa
b , ζr

s ; ζh
k ) = −1 +

Na,b,h,k−1∑

n=0

(ζa
b ; ζh

k )n+1

(ζ−r
s ζh

k ; ζh
k )n

×(1 − ζa
b ζ−r

s ζ
h(2n+1)
k )(−ζa

b ζ−2r
s )nζ

h(3n2+n)
2k . (1.9)

We note that (1.9) holds for S̃(ζr
s , ζa

b ; ζh
k ) if s|k and b � k, by interchanging the

roles of ζa
b and ζr

s in (1.9), and replacing Na,b,h,k by Nr,s,h,k.
Analogous to Theorem 1.1 for the mock Jacobi form μ, we have Theorems

1.3 and 1.4 below for the generalized (mixed) mock and quantum modular
forms Rj and Uj .

Theorem 1.3. Let q ∈ D
∗ and α, β ∈ C\{0}, α �= q�, β �= qm (�,m ∈ N).

(i) If additionally one of the following holds
• j = 1, k ∈ {1, 2, 3}, |β| > 1, α �= q−�, β �= q−m (�,m ∈ N0), and

α−1q, β−1q ∈ D
∗,

• j = 2, k ∈ {1, 2, 3}, and |β| > 1,
then we have that

Rj(α, β; q−1) = αχj

(
β−1, α−1; q

)
+ (1 − β−1)Sj,k(α, β; q).

(ii) If additionally one of the following holds
• j = 1, k ∈ {1, 2, 3}, |α| > 1, α �= q−�, β �= q−m (�,m ∈ N0), and

α−1q, β−1q ∈ D
∗,

• j = 2, k ∈ {1, 2, 3}, and |α| > 1,
then we have that

Rj(α, β; q−1) = βχj

(
α−1, β−1; q

)
+ (1 − α−1)Sj,k(β, α; q).

(iii) If additionally −β
1
2 �= q

r
4 α

1
2 (r ∈ 2N0 + 1), αβ−1q ∈ D

∗, and one of the
following holds

• j = 1, k ∈ {1, 2, 3}, |β| > 1, α �= q−�, β �= q−m (�,m ∈ N0), and
α−1q, β−1q ∈ D

∗,
• j = 2, k ∈ {1, 2, 3}, and |β| > 1,
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then we have that

Rj(α, β; q−1) = αXj

(
β−1, α−1; q

)
+ (1 − β−1)Sj,k(α, β; q).

(iv) If additionally −α
1
2 �= q

r
4 β

1
2 (r ∈ 2N0 + 1), α−1βq ∈ D

∗, and one of the
following holds

• j = 1, k ∈ {1, 2, 3}, |α| > 1, α �= q−�, β �= q−m (�,m ∈ N0), and
α−1q, β−1q ∈ D

∗,
• j = 2, k ∈ {1, 2, 3}, and |α| > 1,

then we have that

Rj(α, β; q−1) = βXj

(
α−1, β−1; q

)
+ (1 − α−1)Sj,k(β, α; q).

Remark. From the fact that the mock modular partition rank generating func-
tion R can be expressed in terms of R as R(w; q) = R(w,w−1; q), we imme-
diately obtain results pertaining to R(w; q) from Theorem 1.3. These extend
the results on R(w; q) given in [10, Theorem 3.2].

Theorem 1.4. Let q ∈ D
∗ and α, β ∈ C\{0}.

(i) If additionally one of the following holds
• j = 1 and α �= q�, β �= qm (�,m ∈ N0),
• j = 2, α �= q−�, β �= q−m (�,m ∈ N), and αq, βq ∈ D

∗,
then we have that

Uj(α, β; q−1) = −β−1 · χj (α, β; q) or, equivalently, Uj(α, β; q−1)

= −α−1 · χj (β, α; q) .

(ii) If additionally −β
1
2 �= q

r
4 α

1
2 (r ∈ 2N0 + 1), αβ−1q ∈ D

∗ and one of the
following holds

• j = 1 and α �= q�, β �= qm (�,m ∈ N0),
• j = 2, α �= q−�, β �= q−m (�,m ∈ N), and αq, βq ∈ D

∗,
then we have that

Uj(α, β; q−1) = −β−1 · Xj (α, β; q) .

(iii) If additionally −α
1
2 �= q

r
4 β

1
2 (r ∈ 2N0 + 1), α−1βq ∈ D

∗, and one of the
following holds

• j = 1 and α �= q�, β �= qm(�,m ∈ N0),
• j = 2, α �= q−�, β �= q−m(�,m ∈ N), and αq, βq ∈ D

∗,
then we have that

Uj(α, β; q−1) = −α−1 · Xj (β, α; q) .

Remark. We immediately obtain results pertaining to the quantum modular
unimodal rank generating function U(w; q) from Theorem 1.4, using the re-
lationship q U(wq,w−1q; q) = U(w; q). Moreover, when w = 1(α = β = q),
the function χ(1; q) =

∑∞
m=0(−1)mq

m(m+1)
2 arising from part (i) of Theorem

1.4 is essentially the Eichler integral of the shadow η3(τ) =
∑∞

n=0(−1)n(2n +

1)q
(2n+1)2

8 appearing in [14, Theorem 1.3].1 Asymptotic relationships of this

1 The function U(−w; q) as defined in [14, (1.1)] is equal to the function U(w; q) defined in
(1.6).
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type have been shown to exist as q tends radially towards roots of unity ζ on
the boundary of D [12,18,26], and these have been of particular interest when
studying quantum modular forms arising from mock modular forms. Here, we
see the function χ directly via the extension of U to the lower half-plane in
Theorem 1.4. In this case, one is able to directly (as opposed to asymptotically)
evaluate the function X from parts (ii) and (iii) of Theorem 1.4 at suitable
roots of unity as an explicit finite sum, similar to Proposition 1.2.

2. Preliminaries. In this section, we establish some preliminary results and
definitions for q-hypergeometric series and partial theta functions, which we
will use in our proofs of Theorems 1.1, 1.3, and 1.4. The first such result is
due to Andrews [3], extending similar results of Ramanujan. The identity in
(2.1) holds for complex parameters a, b, A,B, and q such that the functions
appearing converge.

Theorem [3, Theorem 1]. We have that

∞∑

n=0

(B; q)n(−Abq; q)nqn

(−aq; q)n (−bq; q)n

=
−a−1(B; q)∞(−Abq; q)∞

(−bq; q)∞ (−aq; q)∞

∞∑

m=0

(A−1; q)m

(
Abq
a

)m

(−B
a ; q

)
m+1

+ (1 + b)
∞∑

m=0

(−a−1; q)m+1

(
−ABq

a ; q
)

m
(−b)m

(−B
a ; q

)
m+1

(
Abq
a ; q

)

m+1

.

(2.1)

We will also use the following lemma, which extends the infinite product
(α; q) (|q| < 1) outside of the unit disk (|q| > 1).

Lemma 2.1. For |q| < 1 and |αq| < 1, we have that (α; q−1)∞ = (αq; q)−1
∞ .

Proof. The following identities of Euler are well-known (|q| < 1) [19]

(αq; q)−1
∞ =

∞∑

n=0

(αq)n

(q; q)n
, (α; q)∞ =

∞∑

n=0

(−1)nq
n(n−1)

2 αn

(q; q)n
, (2.2)

The first holds under the additional hypothesis |αq| < 1. The sum in the second
identity in (2.2) also makes sense for |q| > 1, which can be seen by replacing
q �→ q−1, and applying

(a; q−1)n = (a−1; q)n(−a)nq− n(n−1)
2 , (2.3)

which is also well known [19], and holds for n ∈ N0. After some simplification,
we find the sum appearing on the right-hand side of the first identity in (2.2).
The result follows by applying the first identity in (2.2). �

Next we define the partial theta functions and q-hypergeometric series ap-
pearing in the statements of Theorems 1.1, 1.3, and 1.4 in terms of the func-
tions χ,X, and Sk (1 ≤ k ≤ 3) defined in (1.8). We define for j ∈ {1, 2} and
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k ∈ {1, 2, 3} the partial theta and q-hypergeometric functions

χj(α, β; q) :=

{
χ
(

α
β ; q

)
if j = 1,

χ
(

α
β ; q

)
(αq; q)−1

∞ (βq; q)−1
∞ if j = 2,

Xj(α, β; q) :=

{
X

(
α
β ; q

)
if j = 1,

X
(

α
β ; q

)
(αq; q)−1

∞ (βq; q)−1
∞ if j = 2,

Sj,k(α, β; q) :=

{
Sk

(
α, β−1; q

)
(α−1q; q)∞(β−1q; q)∞ if j = 1,

Sk(α, β−1; q) if j = 2.

(2.4)

3. Proofs. We first prove Theorems 1.3 and 1.4 using limiting versions of An-
drews’ theorem (i.e. (2.1)), Lemma 2.1, and relationships between the functions
χ,X, and Sk(k ∈ {1, 2, 3}). We then prove Theorem 1.1 in part from Theorems
1.3 and 1.4. For brevity, we omit the proof of Proposition 1.2, as it follows by a
direct calculation using the definition of the function S2, the numbers Nc,d,h,k,
and the hypotheses given.

Proof of Theorem 1.4. In (2.1), we first let b = −α
Aq . We then let A → ∞,

and use the fact that limA→∞ A−m(xA; q)m = (−x)mq
m(m−1)

2 . Thus, after
the aforementioned substitution in b, letting A → ∞, we have (using uniform
convergence) that (2.1) becomes

∞∑

n=0

(B; q)n(α; q)nqn

(−aq; q)n
=

−a−1(B; q)∞(α; q)∞
(−aq; q)∞

∞∑

m=0

(−α
a

)m

(−B
a ; q

)
m+1

+
∞∑

m=0

(−a−1; q)m+1

(
αB
a

)m
q

m(m−1)
2

(−B
a ; q

)
m+1

(−α
a ; q

)
m+1

. (3.1)

Next we let a → 0, using that lima→0 am(xa−1; q)m = (−x)mq
m(m−1)

2 . This
allows us to determine the limiting value of the first sum on the right-hand
side of (3.1).

To evaluate the remaining limiting value of the second sum on the right-
hand side of (3.1), we rewrite

∞∑

m=0

(−a−1; q)m+1

(
αB
a

)m
q

m(m−1)
2

(−B
a ; q

)
m+1

(−α
a ; q

)
m+1

= a

∞∑

m=0

(
am+1(−a−1; q)m+1

)
(αB)m

q
m(m−1)

2

(
am+1

(−B
a ; q

)
m+1

) (
am+1

(−α
a ; q

)
m+1

) . (3.2)

We proceed similarly and find that the second sum on the right-hand side of
(3.1) converges to 0 as a → 0. Thus, we have shown that

∞∑

n=0

(B; q)n(α; q)nqn = −B−1(B; q)∞(α; q)∞
∞∑

m=0

(−α

B

)m

q− m(m+1)
2 .

We let B = β, then divide both sides by (α; q)∞(β; q)∞, and let q �→ q−1.
Subject to the hypotheses given to ensure convergence, this proves the first
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statement in part (i) of Theorem 1.4 when j = 1. To prove the second assertion,
we repeat the above, interchanging the roles of α and β. To prove part (i) when
j = 2, we multiply both sides of the the result just established for j = 1 by
(α; q−1)∞(β; q−1)∞, and apply Lemma 2.1 on the right-hand side. Parts (ii)
and (iii) follow from part (i), using that X(z; q) = χ(z; q) when |q| < 1 and
|zq| < 1 where defined, which can be deduced from a result of Rogers and Fine
([17], see also [18, p. 7]). �

Proof of Theorem 1.3. We proceed in a similar manner to the proof of Theo-
rem 1.4 above. We use (2.3), as well as the identity from (2.1), letting A → 0,
and B → 0, with a = −α−1, b = −β−1. This shows that R(α, β; q−1) equals

∞∑

n=0

qn

(α−1q; q)n(β−1q; q)n
=

α

(α−1q; q)∞(β−1q; q)∞
χ

(
α

β
; q

)

+(1 − β−1)
∞∑

m=0

(α; q)m+1β
−m. (3.3)

Subject to the hypotheses given to ensure convergence (from the definition of
Sj,k(α, β; q) in (2.4), we require in particular |β| > 1), this proves part (i) of
Theorem 1.3 when j = 2 and k = 1. To prove the results in (i) for j = 2
and k ∈ {2, 3}, we use that the three functions Sk(α, β; q) k ∈ {1, 2, 3} are
equal where they converge: the equality of S1 and S3 can be deduced from [17,
(12.2)], and the equality of S1 and S2 follows from the “Rogers-Fine identity”
(see [24, (1)] or [10, (2.2)]). This proves part (i) for j = 2. To prove part (i)
for j = 1, we multiply both sides of the identity just established for j = 2
by (α−1q; q)∞(β−1q; q)∞, and apply Lemma 2.1 on the left-hand side. Subject
to the convergence conditions given, this proves part (i) for j = 1. As was
the case in the proof of Theorem 1.4, we prove part (ii) of Theorem 1.3 by
interchanging the roles of α and β. Also similar to the proof of Theorem 1.4,
we deduce parts (iii) and (iv) of Theorem 1.3 from parts (i) and (ii). �

We are now prepared to prove Theorem 1.1, which follows, in part, from
Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.1. We use Ramanujan’s striking identity, recently revis-
ited by Choi and in [18], (see [7, Entry 3.4.7, p. 67], [15], or [18, Theorem 3.1]),
relating the functions M,R, and U ; this identity can be re-written as follows,
with α = e2πiu, β = e2πiv:

M(u, v; τ) = R(α, β; q) + U(α−1, β−1; q) − 1.

We let q �→ q−1, and apply Theorem 1.3 part (i) with j = 2, and the second
expression in Theorem 1.4 part (i) with j = 2 and α �→ α−1, β �→ β−1.
Subject to the hypotheses given, we have that M(α, β; q−1) = −1 + (1 −
β−1)S2,k(α, β−1; q), which proves part (ii) of Theorem 1.1. Part (iv) follows
similarly. Parts (i) and (iii) of Theorem 1.1 also follow in a similar way, using
Lemma 2.1, parts (i) and (ii) of Theorem 1.3 with j = 1, and part (i) of
Theorem 1.4 with j = 1. �
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