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Abstract

Our results investigate mock theta functions and quantummodular forms via quantum
q-series identities. After Lovejoy, quantum q-series identities are such that they do not
hold as an equality between power series inside the unit disc in the classical sense, but
do hold at dense sets of roots of unity on the boundary. We establish several general
(multivariable) quantum q-series identities and apply them to various settings involving
(universal) mock theta functions. As a consequence, we surprisingly show that limiting,
finite, universal mock theta functions at roots of unity for which their infinite
counterparts do not converge are quantum modular. Moreover, we show that these
finite limiting universal mock theta functions play key roles in (generalized) Ramanujan
radial limits. A further corollary of our work reveals that the finite Kontsevich–Zagier
series is a kind of “universal quantum mock theta function,” in that it may be used to
evaluate odd-order Ramanujan mock theta functions at roots of unity. (We also offer a
similar result for even-order mock theta functions.) Finally, to complement the notion
of a quantum q-series identity and the results of this paper, we also define what we call
an “antiquantum q-series identity’ and offer motivating general results with
applications to third-order mock theta functions.

Keywords: Mock theta functions, Quantummodular form, q-series, q-hypergeometric
series, Basic hypergeometric series, Quantum q-series
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1 Introduction
The universal mock theta functions g2(w; q) and g3(w; q) of Gordon and McIntosh [25]
defined by

g2(w; q) :=
∞∑

n=0

q
1
2n(n+1)(−q; q)n

(w; q)n+1(q/w; q)n+1
,

g3(w; q) :=
∞∑

n=0

qn2+n

(w; q)n+1(q/w; q)n+1
,

are generalizations of the original mock theta functions of Ramanujan appearing in his
notebooks and last letter to Hardy. The functions g2(w; q) and g3(w; q) are so-called “uni-
versal” due to the fact that all classical mock theta functions of Ramanujan and sub-
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sequent natural generalizations may be written in terms of either g2(w; q) or g3(w; q)
depending on the parity of their “order,” a number assigned to each mock theta func-
tion. Here and throughout, the q-Pochhammer symbol is defined for n ∈ N0 ∪ {∞} by
(a; q)n := ∏n−1

j=0 (1 − aqj). For example, Ramanujan’s popular third-order mock theta
function

f (q) :=
∞∑

n=0

qn2

(−q; q)2n
satisfies f (q) = 2− 2g3(−1; q). Both classically and in their more modern generalizations,
mock theta functions have been objects of extensive research in the areas of number
theory, combinatorics, q-hypergeometric series, and other areas including mathematical
physics (see, e.g., [1,6,13,15,17,25]). One major question surrounding the mock theta
functions was resolved relatively recently nearly 90 years after Ramanujan’s death by
Zwegers, whose important work revealed how exactly the mock theta functions fit into
the theory of modular forms [39,40]. In particular, we now know that they are examples
of mock modular forms [37]. Mock modular forms are holomorphic parts of harmonic
Maass forms (see [6,9] for a precise definition andmore information); the latter transform
like modular forms under the action of an appropriate subgroup of SL2(Z) on the upper
half of the complex plane H := {τ ∈ C | Im(τ ) > 0}, but are also annihilated by a certain
Laplacian operator and possess relaxed growth conditions at cusps.
Quantum modular forms, defined more recently by Zagier [38], transform similarly

under the action of an appropriate � ⊆ SL2(Z) not on H, but rather on Q—and up to the
addition of suitably real analytic error functions. A priori mock and quantum modular
forms need not be related; however, connections between the two topics have emerged
and their study in tandem has been of interest to many [6,11,22,38]. For example, work of
the first author, Rhoades, and Ono [22] revealed how quantummodular forms play a part
in Ramanujan’s original “definition” of a mock theta function [4,6] in hindsight, e.g., we
have from [22, Theorem 1.1] the limit as q approaches even-order k roots of unity (ζ h

k with
h/k reduced and k even) radially fromwithin the unit disk for Ramaujan’s third-order f (q)

lim
q→ζ hk

(f (q) − (−1)k/2b(q)) = −4U (−1; q), (1.1)

which we owe some further explanation. Here and throughout, we let ζN := e2π i/N , and
call a rational number r/s reduced if r ∈ Z, s ∈ N, and gcd(r, s) = 1. The function b(q) is
a certain modular form, up to minor normalizing factors, and when viewed as a function
of τ ∈ H, with q = e2π iτ . The even-order k roots of unity ζ h

k appearing are singularities
of both f (q) and b(q), while U (−1; ζ h

k ) converges (to a finite sum). The function U (−1; q)
is a combinatorial generating function related to ranks of strongly unimodal sequences—
which, non-trivially, is also a quantum modular form (see [21]), after appropriate minor
normalizing factors and when viewed as a function of x ∈ Q with q = e2π ix. That is, (1.1)
asymptotically relates mock modular, modular, and quantum modular forms.
A quantum q-series identity plays an important role in establishing the quantum mod-

ularity ofU (−1; q) as discussed above. That is, for roots of unity q = ζ h
k with h/k reduced,

we have that

U (w; q) :=
∞∑

n=0
qn+1(wq; q)n(w−1q; q)n =q−1

∞∑

n=0
wn+1(wq; q)n =: F (w; q) (1.2)
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for suitablew (see [16,21,26]). Here and throughout, we adopt Lovejoy’s [31] terminology
quantum q-series identity and notation “ =′′

q−1 , which we now explain: a quantum q-series
identity A(q) =q−1 B(q) is one between functions A(q) and B(q) such that as power series
inside the unit discA(q) and B(q) are not equal there in the classical sense, but are equal to
one another on a dense set of roots of unity on the boundary of the disk, andwith q 	→ q−1

for one of the functions (A(ζ h
k ) = B(ζ−h

k ) for a dense set of ζ h
k ). As Lovejoy explains in

[31], quantum q-series identities have emerged not only in the context of identity (1.2)
just described and its extensions, but also in older work of Cohen related to Ramanujan’s
σ and σ ∗ functions studied by Andrews–Dyson–Hickerson [2,12], and more, such as in
the newer results of [31,32].
The specialization F (1; q) (with F (w; q) as defined in (1.2)) is a function first introduced

by Kontsevich [29] and later studied by Zagier [36,38] who offered it as one of his first
pioneering examples of a quantum modular form (up to a minor normalization) when
viewed as a function of x ∈ Q with q = e2π ix. Further quantum modular properties of
F (w; q) have since been established as have connections to colored Jones polynomials for
torus knots in topology [16,21,26].
The radial limit (1.1) is generalized by [22, Theorem 1.2] of the first author with Ono

and Rhoades as follows:

lim
q→ζ hk

(R(ζ a
b ; q) − ζ−a2h′k

b2 C(ζ a
b ; q)) = −(1 − ζ a

b )(1 − ζ−a
b )U (ζ a

b ; ζ
k
k ) (1.3)

where h/k and a/b are reduced, b | k , and hh′ ≡ −1 (mod k), in which the partition rank
generating function R(w; q) replaces f (q) in (1.1) (note that f (q) = R(−1; q)) and in which
the partition crank generating function

C(w; q) := (q; q)∞
(wq; q)∞(w−1q; q)∞

(multiplied by an additional constant) replaces (−1)k/2b(q) (note that b(q) = C(−1; q)).
As in (1.1), U (ζ a

b ; ζ
h
k ) converges while R(ζ

a
b ; ζ

h
k ) and C(ζ a

b ; ζ
h
k ) do not. Subsequent follow-

up work by Bringmann–Rolen [8] and Jang–Lobrich [27] related to questions and work
of Choi–Lim–Rhoades [11] establishes radial limit results analogous to the work in [22]
for the universal mock theta functions g2(w; q) and g3(w; q), respectively (with g2 and g3
assuming the role of the mockmodular R (or f )). As a consequence, their works reveal the
quantummodularity of g2(w; q) and g3(w; q) for certain fixed roots of unityw as a function
of x ∈ Qwith q = e2π ix where g2(w; q) and g3(w; q) naturally converge (see [8] and [27] for
a precise statement of their results). Earlier work by others including [10,19,20,28] also
study universal mock theta functions in the context of quantum modular and quantum
Jacobi forms at (pairs of) roots of unity where the functions converge.
In particular, it can be shown that g3(ζ a

b ; ζ
h
k ) converges (to an explicit value, see [27]),

where h/k and a/b are reduced rationals with b � k (the complementary set as in the
radial limit (1.3)), and as described above, is essentially quantummodular as a function of
h/k ∈ Q for each fixed w = ζ a

b with b � k. Our first set of results (see Theorems 1.1, 1.2
and Corollary 1.3), rather surprisingly, shows how the limiting, finite universal mock theta
functions

g∗
3, ab

( hk ) := lim
y→ a

b

(1 − e(yk))2(g3)[k](e(y); ζ h
k )

(where e(u) := e2π iu) play three important roles in the above contexts, namely:
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(1) in Ramanujan’s radial limits,
(2) as quantum dual to the generalized Kontsevich–Zagier function,
(3) as quantum modular forms—yet at the complementary set of roots of unity

Qb :=
{h
k

: h/k reduced, and b | k
}

⊂ Q

on which g3(ζ a
b ; ζ

h
k ) (viewed as a function of x = h/k for fixed ζ a

b ) does not converge.

Here and throughout, we use the notation S[k] to stand for the truncation of a series
S := ∑∞

n=0 an as follows

S[k] :=
∑

0≤n≤k−1
an, (1.4)

so that limk→∞ S[k] = S. When S is a function of the form S(x) := ∑
n≥0 an(x), we will

write S[k](x) for (S(x))[k] (for ease of notation).We extend the notation in the obvious way
to series of multiple variables.
To this end, our first result is as follows.

Theorem 1.1 Let h/k and a/b be reduced, with b | k, and let h′ be an integer such that
hh′ ≡ −1 (mod k). Then as q approaches ζ h

k radially from within the complex unit disk,
we have

lim
q→ζ hk

⎛

⎝g3(ζ a
b ; q) − ζ−a2h′k−ab

b2

1 − ζ a
b

C(ζ a
b ; q)

⎞

⎠ = lim
w→ζ ab

(1 − wk )2(g3)[k](w; ζ h
k ). (1.5)

Remark 1 We further explain this theorem as follows. Theorem 1.1 establishes a radial
limit result for the universal mock theta function g3(w; q), highlighting separate limits in
both variables q andw, and in terms of the finite universal mock theta (g3)[k](w; q). On the
left-hand side of (1.5), we see the radial limit difference between g3(ζ a

b ; q) and the crank
function C(ζ a

b ; q) (up to multiplication by a constant) as q → ζ h
k radially from within the

disk, noting that for fixed w = ζ a
b with b | k , the universal mock theta function g3(ζ a

b ; ζ
h
k )

and the crank function C(ζ a
b ; ζ

h
k ) have singularities. The right-hand side of (1.5) reveals

that the growth of the crank function compensates for the growth of the universal mock
theta function g3 at such singularities, and their radial limit difference (in the variable q)
may be realized again in terms of g3, namely the finite (g3)[k](w; ζ h

k ) upon a limit in the
second variable w → ζ a

b . Note also that the limit in w in (1.5) need not be radial, and
that the truncation is forced in the sense that its infinite counterpart does not converge at
these values. (See also Remark 2 (3).)

The following quantum q-series result for the finite universalmock theta function (g3)[k]
shows that at (toward) suitable roots of unity itmaybe evaluated in termsof the generalized
Kontsevich–Zagier F (w; q) function.

Theorem 1.2 Let q = ζ h
k with h/k reduced, and let a/b be reduced with b | k. Then

lim
w→ζ ab

(1 − wk )2(g3)[k](w; q) =q−1 ζ−2a
b (1 − ζ a

b )F (ζ
a
b ; q) − ζ−a

b .
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Combining our Theorem 1.2 with the aforementioned work on the quantum modular
properties of F (w; q) (see [21,38]) yields the following result.

Corollary 1.3 For each reduced a/b with b �= 1, up to suitable normalizations, the func-
tion

g∗
3, ab

: Qb → C

is a weight 1/2 quantum modular form.

Remark 2 (1) When b = 1 both sides of Theorem 1.2 evaluate to −1; moreover, work
of Zagier [38] establishes the quantummodularity of (a suitably normalized) F (1; q).

(2) Atfirst glance, our corollary shows that the infinite family g∗
3, ab

( hk ) (indexedby reduced
rationalsa/b) of finite limiting universalmock theta functions are imperfect quantum
modular forms (after suitable normalizations) due to separate dependence on the
denominators of rationals inQb, i.e., the function (g3)[k] is a sum up to k −1. Despite
what the namemight suggest, several families of such formshave been studied, e.g., in
[5,18] and in relation to the Riemann Hypothesis in [30], following Zagier’s original
elegant prototype example of such a form given by the Dedekind sum in [38]. On
the other hand, the identity of Theorem 1.2 reveals that this apparently separate
dependence on k may be ignored.

(3) As noted above, an interesting feature of this set of results is that it establishes the
quantum modularity of an infinite family of finite limiting universal mock theta
functions at the complementary set of roots of unity h/k ∈ Qb for which the infinite
series defining g3(ζ a

b ; ζ
h
k ) is not defined; the analogous limits defining g∗

3,a/b also do
not exist if one replaces the finite universal mock theta function (g3)[k] by its infinite
counterpart g3. We emphasize that the truncations at k − 1 are “unnatural” (e.g., it
is not true that the nth summands for n ≥ k of these q-hypergeometric series are all
equal to 0). See also the preprint [33] for related work.

We also obtain a similar set of results for the universal mock theta function g2 in
Theorem 1.4 and Corollary 1.5, which are stated in terms of the finite limiting universal
mock theta function

g∗
2, ab

( hk ) := lim
y→ a

b

(1 − e(yk))2(g2)[k](e(y); e( hk )),

the quantum set of rationals where g2(ζ a
b ; ζ

h
k ) does not naturally converge

Qo
b :=

{h
k

: h/k reduced, k odd, and b | k
}

⊂ Q,

and the q-hypergeometric series

H (w; q) :=
∞∑

n=0

(wq; q)n
(−wq; q)n

wn,

which was studied in the context of quantum modular forms in [16,23] and [34]; see also
the relevant quantum modular results in [8], noting that as a q-series (|q| < 1) [14],

(1 − w)H (w; q) = 1 + 2
∑

n≥1
(−w2)nqn

2
.
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Theorem 1.4 Let q = ζ h
k with h/k reduced, k odd, and let a/b be reduced with b | k. Then

lim
w→ζ ab

(1 − wk )2(g2)[k](w; q) =q−1 −ζ−a
b − (ζ−a

b − ζ−2a
b )H (ζ−a

b ; q). (1.6)

Corollary 1.5 For each reduced a/b with b �= 1, up to suitable normalizations, the func-
tion

g∗
2, ab

: Qo
b → C

is a weight 1/2 quantum modular form.

Remark 3 When b = 1, both sides of (1.6) evaluate to −1; moreover, quantum modular
properties of H (1; q) are established in [34].

A further corollary of our work reveals that the finite Kontsevich–Zagier series
(F )[k](w; q) is a kind of “universal quantum mock theta function,” in that it may be used
to evaluate the odd-order Ramanujan mock theta functions at (suitable) roots of unity.
We also offer a similar result for even-order mock theta functions in terms of the finite
(H )[k](w; q) function (see Proposition 4.1). We deduce these results from Proposition 3.1
(restated in Proposition 1.6) and Proposition 4.1 and the fact that g3(w; q) and g2(w; q) are
universal mock theta functions (see e.g. [25] and [6, Appendix A]). Namely, the following
proposition reveals the quantum universal mock nature of the finite Kontsevich–Zagier
series:

Proposition 1.6 Let q = ζ h
k with h/k reduced. For |2 − wk − w−k | > 1, |wk − w2k | > 1,

we have

g3(w; q) = g3,3(w; q) =q−1 −w−1 − w−k−2 1 − w
1 − wk − w−k (F )[k](w; q).

(The function g3,3 is defined in (3.1).) Explicitly, for the third-order mock theta functions,
our work reveals the following at suitable roots of unity q (unless otherwise indicated,
q = e2π ih/k ). See Table 1.
Our results in this paper extend beyond Theorems 1.1, 1.2 and 1.4, Corollaries 1.3 and

1.5, and the quantum mock universality (e.g. Proposition 1.6) all described above. In the
remainder of the paper, we state and prove these and several additional theorems and
corollaries relating the universal mock theta functions g3(w; q) and g2(w; q) along with

Table 1 Quantum q-series: third-order mock theta functions evaluated as finite Kontsevich–Zagier
series at suitable roots of unity (See Proposition 1.6)

f (q) = − 4
3
(F)[k](−1; q−1),

φ(q) = 2i−k

1 − ik − i−k
(F)[k](i; q

−1),

ψ (q) = −1 − q−k−1 1 − q

1 − qk − q−k
(F)[k](q; q

−4), (q4 = e2π ih/k ),

χ (q) = −(−ζ3)−k−1 (1 + ζ3)2

1 − (−ζ3)k − (−ζ3)−k
(F)[k](−ζ3; q−1),

ω(q) = −q−1 − q−k−2 1 − q

1 − qk − q−k
(F)[k](q; q

−2), (q2 = e2π ih/k ),

ν(q) = iq−1/2 + i−kq−(k+2)/2 1 − iq1/2

1 − ikqk/2 − i−kq−k/2
(F)[k](iq

1/2; q−1),

ρ(q) = −ζ−1
3 q−1 − (ζ3q)−k−2 1 − ζ3q

1 − (ζ3q)k − (ζ3q)−k
(F)[k](ζ3q; q

−2), (q2 = e2π ih/k ).
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their finite counterparts (g3)[k](w; q) and (g2)[k](w; q) and other related q-hypergeometric
series to the generalized Kontsevich–Zagier quantum modular F (w; q) and the quantum
modular H (w; q), respectively (see Propositions 3.1, 3.4, 4.1, and 4.4 in Sects. 3 and 4).
In Sect. 2, we state and prove three general quantum q-series identities in Propositions
2.1 and 2.2, which are both of independent interest and used to prove our subsequent
results on (universal)mock theta functions andquantummodular forms. Finally, in Sect. 5,
complementary to Lovejoy’s definition and study of quantum q-series identities in [31]
and our other results in this paper, we define the notion of an antiquantum q-series
identity and offer motivating general results in Propositions 5.1 and 5.2, with applications
to third-order mock theta functions in Corollary 5.3.

2 Quantum q-series
In this section, we state and prove three general quantum q-series identities, which are
of independent interest and are also used to prove results in the following sections on
(universal) mock theta functions and quantum modular forms. To do so, we first recall
the basic hypergeometric series [24]

rφs

(
a1 a2 a3 · · · ar
b1 b2 · · · bs

; q; t
)
:=

∞∑

n=0

(a1; q)n · · · (ar ; q)n
(b1; q)n · · · (bs; q)n(q; q)n

(
(−1)nq(

n
2)

)1+s−r
tn.

Using these series, we define for r ∈ N

φr

(
a1 a2 · · · ar
b1 b2 · · · br ; q; t

)

:= r+1φr

(
a1q a2q · · · arq q
b1q b2q · · · brq ; q; t

)
=

∞∑

n=0

(a1q; q)n · · · (arq; q)n
(b1q; q)n · · · (brq; q)n t

n. (2.1)

With the notation x = xr := (x1, x2, · · · , xr) (r ∈ N), we define

ur,k (a,b, t) := (1 − ak1) · · · (1 − akr )
(1 − bk1) · · · (1 − bkr )

tk ,

δr,k (a,b, t) :=
(
1 − ur,k (a,b, t)

)−1 ,

and

cr,k (a,b, t) := δr,k (a,b, t)
ur,k (a,b, t)
ur,1(a,b, t)

.

In what follows, when r = 1, wemay write x as x for simplicity. Our first general quantum
q-series identity is the following.

Proposition 2.1 Let r, k ∈ N, and q = ζ h
k with h/k reduced. Then

φr

(
a1 a2 · · · ar
b1 b2 · · · br ; q; t

)
=q−1 cr,k (a,b, t)(φr)[k]

(
b1 b2 · · · br
a1 a2 · · · ar ; q; t

−1
)
. (2.2)
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Remark 4 (1) It is possible for some or all of the parameters t and aj, bj (1 ≤
j ≤ r) appearing in Proposition 2.1 to depend on q; however, we emphasize
that our notation “ =q−1 ” used above (which was first used by Lovejoy in [31])
should be read (in this case, and similar instances throughout the paper) as

= cr,k (a,b, t)(φr)[k]

(
b1 b2 · · · br
a1 a2 · · · ar ; q

−1; t−1

)
.

(2) When r = 1, under the hypotheses given, Proposition 2.1 establishes a quantum

q-series identity forFine’s basichypergeometric series [14]Fq(a1, b1; t) = φ1

(
a1
b1

; q; t
)

as follows:

Fq(a1, b1; t) =q−1 c1,k (a1, b1, t)(Fq)[k](b1, a1; t−1).

(3) As is common with q-hypergeometric series identities in the literature (see, e.g., the
books [14] including p2 Sec. 3 and [24], and numerous related papers including the
recent [31] and [3]), we state Proposition 2.1 without enforced conditions on the
additional parameters a,b, and t for maximum applicability, with the understanding
that the identity may be used with any values of these parameters such that both the
left- and right-hand sides simultaneously converge, or in other appropriate limiting
settings, e.g., when certain parameters tend to 0 or ∞ as is common in the subject.
We state other identities throughout the paper (including Proposition 2.2) similarly.
For example, the right-hand side of (2.2) is a rational function and will converge for
any complex a,b, and t that do not produce poles; it will also converge with certain
poles after taking suitable limits. We illustrate some specific applications of interest
including limiting ones in Sects. 3–5.

(4) The proof techniques used to prove Propositions 2.1, 2.2 and related results below
are not limited to these settings; it would be of interest to use the techniques of
this paper to establish quantum-type identities for other q-hypergeometric series of
interest, including but not limited to mock modular and quantum modular forms.

Our second and third general quantum q-series identities are as follows.

Proposition 2.2 Let q = ζ h
k with h/k reduced. Then

−z−1(1 − bk )(1 − zk )
k−1∑

n=0

(bz−1)nqn2+n

(bq; q)n+1(z−1; q)n+1
=q−1

k−1∑

n=0
(b; q)nzn, (2.3)

and

−z−1 (1 − cq)(1 − bk )(1 − zk )
(1 − ck )

k−1∑

n=0

(bc−1; q)n
(−cqz−1)n q n2+n

2

(bq; q)n+1(z−1; q)n+1
=q−1

k−1∑

n=0

(b; q)n
(c; q)n

zn.

(2.4)

Proof of Proposition 2.1 We use that for q = ζ h
k (where h/k is reduced), we have

(xq; q)s+mk = (1 − xk )m(xq; q)s (s,m ∈ N0), and hence,

φr

(
a1 a2 · · · ar
b1 b2 · · · br ; q; t

)
=

∑

n≥0

(a1q; q)n · · · (arq; q)n
(b1q; q)n · · · (brq; q)n t

n
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=
∑

0≤s≤k−1
m≥0

(a1q; q)s+mk · · · (arq; q)s+mk
(b1q; q)s+mk · · · (brq; q)s+mk

ts+mk

=
⎛

⎝
∑

m≥0
(ur,k (a,b, t))m

⎞

⎠

⎛

⎝
∑

0≤s≤k−1

(a1q; q)s · · · (arq; q)s
(b1q; q)s · · · (brq; q)s t

s

⎞

⎠ .

Using the given hypotheses, as well as that (xq; q)k = (xq; q)s(xqs+1; q)k−s and
(xq1−n; q)n = (x; q−1)n, we find that this equals

δr,k (a,b, t)ur,k (a,b, 1)
∑

0≤s≤k−1

(b1qs+1; q)k−s · · · (brqs+1; q)k−s
(a1qs+1; q)k−s · · · (brqs+1; q)k−s

ts

= δr,k (a,b, t)ur,k (a,b, 1)
∑

0≤s≤k−1

(b1; q−1)k−s · · · (br ; q−1)k−s
(a1; q−1)k−s · · · (ar ; q−1)k−s

ts

= cr,k (a,b, t)
∑

0≤s≤k−1

(b1q−1; q−1)s · · · (brq−1; q−1)s
(a1q−1; q−1)s · · · (arq−1; q−1)s

t−s

=q−1 cr,k (a,b, t)(φr )[k]

(
b1 b2 · · · br
a1 a2 · · · ar ; q; t

−1
)

as claimed. ��
Proof of Proposition 2.2 To prove (2.3), we begin with [31, (2.3)] withN 	→ k, q = ζ h

k and
q 	→ q−1, so that

k−1∑

n=0
(b; q−1)nzn = bk−1

k−1∑

n=0
(b; q−1)n(z−1q−1; q−1)n(z/b)nqn

2+n.

This equals

bk−1

(1 − bq)(1 − z−1)

k−1∑

n=0
(bq; q−1)n+1(z−1; q−1)n+1(z/b)nqn

2+n

= bk−1

(1 − bq)(1 − z−1)

k−1∑

n=0
(bq; q−1)k−n(z−1; q−1)k−n(z/b)k−n−1qn

2+n

= bk−1

(1 − bq)(1 − z−1)

k−1∑

n=0
(bqn+2−k ; q)k−n(z−1qn+1−k ; q)k−n(z/b)k−n−1qn

2+n

= bk−1

(1 − bq)(1 − z−1)
(bq2; q)k (z−1q; q)k

k−1∑

n=0
(z/b)k−n−1 qn2+n

(bq2; q)n(z−1q; q)n

= bk−1(1 − (bq)k )(1 − z−k )
k−1∑

n=0
(z/b)k−n−1 qn2+n

(bq; q)n+1(z−1; q)n+1

as claimed.
To prove (2.4), we begin with [31, (1.21)] with N 	→ k − 1, with q = ζ h

k and q 	→ q−1

to obtain

∑

0≤n≤k−1

(b; q−1)n
(c; q−1)n

zn
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= (c/b; q−1)k−1
(c; q−1)k−1

bk−1
∑

0≤n≤k−1

(−1)n(b; q−1)n(z−1q−1; q−1)n(z/c)nqn(n−1)/2

(bq−2/c; q−1)n
.

Now we proceed similarly to the above proof of (2.3) using that (xq; q)k = (xq; q)s
(xqs+1; q)k−s and (xq1−n; q)n = (x; q−1)n, to eventually rewrite this as

− (c/b; q−1)k−1
(c; q−1)k−1

bk−1 (b; q−1)k (z−1q−1; q−1)k
(bq−2/c; q−1)k

(z/c)k

×
∑

0≤n≤k−1

(−1)k−n(bq−1/c; q)k−n(c/z)k−nq(k−n)(k−n+1)/2

(bq; q)k−n(z−1; q)k−n

= − (c/b; q−1)k−1
(c; q−1)k−1

bk−1 (b; q−1)k (z−1q−1; q−1)k
(bq−2/c; q−1)k

(z/c)k (1 − bq−1/c)

×
∑

0≤n≤k−1

(−1)n+1(b/c; q)n(c/z)n+1q(n+1)(n+2)/2

(bq; q)n+1(z−1; q)n+1
.

With a little more simplifying and using that (xq; q)k = (1 − xk ) and (xq; q)k−1 = (1 −
xk )/(1 − x), we obtain the result. ��

3 The universal mock theta function g3(w; q) and the generalized
Kontsevich–Zagier quantummodular form F(w; q).
In this section, we state and prove, using in part our general results from the previous sec-
tion, several quantum q-series results relating the universal mock theta function g3(w; q)
and affiliate

g3,3(w; q) :=
∞∑

n=0

qnw−n

(w; q)n+1
(3.1)

studied in [7], to the generalized Kontsevich–Zagier quantummodular F (w; q). We begin
with a quantumq-series identity at roots of unityq = ζ h

k and complex values ofw forwhich
g3(w; q) and g3,3(w; q) naturally converge, in terms of the finite generalized Kontsevich–
Zagier (F )[k](w; q), exhibiting a kind of universal quantummodularity of (F )[k](w; q). (Note
that Proposition 3.1 is also stated in Sect. 1 as Proposition 1.6 for convenience.) See also
Table 1.

Proposition 3.1 Let q = ζ h
k with h/k reduced. For |2 − wk − w−k | > 1, |wk − w2k | > 1,

we have

g3(w; q) = g3,3(w; q) =q−1 −w−1 − w−k−2 1 − w
1 − wk − w−k (F )[k](w; q).

In Fig. 1, we plot the set of complexwwith−2 ≤ Re(w), Im(w) ≤ 2 satisfying the hypothe-
ses of Proposition 3.1 with k = 11.
We also establish a type of dual to the above proposition, trading the non-finite g3 and

g3,3 for the finite (g3)[k] and (g3,3)[k] and trading the finite (F )[k] with the non-finite F . That
is, in Theorem 3.2 (also stated as Theorem 1.2 in Sect. 1 for the function (g3)[k] only) we
establish a limiting quantum q-series identity for the finite (g3)[k] and (g3,3)[k] at roots of
unity q = ζ h

k as w approaches roots of unity ζ a
b with b | k in terms of the generalized

Kontsevich–Zagier F (ζ a
b ; q).We point out that unlike the previous proposition, for b | k,
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Fig. 1 {|2 − w11 − w−11| > 1} ∩ {|w11 − w22| > 1} ∩ {−2 ≤ Re(w), Im(w) ≤ 2}

g3(ζ a
b ; ζ

h
k ) and g3,3(ζ a

b ; ζ
h
k ) do not converge, but their finite limiting expressions presented

below do—and may be evaluated in terms of the Kontsevich Zagier quantum modular
form F (ζ a

b ; ζ
−h
k ).

Theorem 3.2 Let q = ζ h
k with h/k reduced, and let a/b be reduced with b | k. Then

lim
w→ζ ab

(1 − wk )2(g3)[k](w; q) = − lim
w→ζ ab

(1 − wk )(g3,3)[k](w; q)

=q−1 ζ−2a
b (1 − ζ a

b )F (ζ
a
b ; q) − ζ−a

b .

As discussed in Sect. 1 (and as stated there as Corollary 1.3), we obtain

Corollary 3.3 For each reduced a/b with b �= 1, up to suitable normalizations, the func-
tion

g∗
3, ab

: Qb → C

is a weight 1/2 quantum modular form.

Remark 5 The quantum modularity of g∗
3,3;a/b(h/k) := limy→a/b(1 − e(ky))(g3,3)[k]

(e(y)); ζ h
k ) on Qb is similarly deduced from Theorem 3.2.

Next we offer a similar quantum q-series result to Theorem 3.2 for (g3,3)[k] for suitable w
in terms of the generalized Kontsevich–Zagier quantum modular F (w; q).

Proposition 3.4 Let q = ζ h
k with h/k reduced. For |wk − w2k | < 1, wk �= 1, we have

(g3,3)[k](w; q) =q−1 w−1−k (1 − wk + w2k )
1 − wk − w−2−k (1 − wk + w2k )(1 − w)

1 − wk F (w; q).

Remark 6 We also establish a non-limiting version of Theorem 3.2 for (g3)[k](w; q) for
suitable w in the course of its proof (see equation (3.2)) similar to Proposition 3.4.
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3.1 Proof of Theorem 1.1, Proposition 3.1, Theorem 1.2 (Thm. 3.2), and Proposition 3.4

Proof of Theorem 1.1 We use [7, Theorem 3.1] by the first author with Bringmann and
Rhoades to write

R(ζ a
b ; q) = ζ a

b (1 − ζ a
b )

(
ζ−a
b + g3(ζ a

b ; q)
)

for |q| < 1. We also use the quantum q-series identity (1.2) for the strongly unimodal
rank function and the generalized Kontsevich–Zagier function as well as our Theorem
3.2 (Thm. 1.2) to obtain

lim
w→ζ ab

(1 − wk )2(g3)[k](w; q) = ζ−2a
b (1 − ζ a

b )U (ζ a
b ; q) − ζ−a

b .

Weuse the above, together with the generalized Ramanujan radial limit [22, Theorem 1.2]
by work of the first author with Ono and Rhoades restated in (1.3), to obtain Theorem 1.1
after some algebra and simplifications. ��
Proof of Proposition 3.1 Using [7, Theorem 3.1] and [14, (2.4)], we find that

g3(w; q) = g3,3(w; q) = 1
1 − w

φ1

(
0
w
; q;w−1q

)
= − 1

w
− 1

w2 φ1

(
0
w
; q;w−1

)
.

Applying Proposition 2.1 in the case that r = 1 (see Remark 2 (2)), we find after some
simplification that

φ1

(
0
w
; q;w−1

)
=q−1 c1,k (0, w, w−1) (φ1)[k]

(
w
0
; q;w

)
,

which is equivalent to

φ1

(
0
w
; q;w−1

)
=q−1

(1 − w)w−k

1 − wk − w−k (F )[k](w; q).

Combining the above results and simplifying completes the proof. ��
Proof of Theorem 3.2 (and Thm. 1.2) We begin with (2.3) from Proposition 2.2, with z =
b = w−1, which reveals that

k−1∑

n=0
(w−1; q−1)nw−n = w1−k (1 − w−kqk )(1 − wk )(g3)[k](w; q).

Now, we observe that (g3)[k](w; q) is invariant under w 	→ qw−1. Using this, and the fact
that qk = 1, we find that

k−1∑

n=0
(q−1w; q−1)nq−nwn = qwk−1(1 − wk )(1 − w−k )(g3)[k](w; q). (3.2)

that w = ζ a
b with b | k then we have that the function on the left-hand side of (3.2) equals

φ1

(
w
0
; q−1;wq−1

)
. Using [14, (2.4)], we see that this equals

(
φ1

(
w
0
; q−1;w

)
− 1

1 − w

)
w − 1
w2q−1 .
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After some simple algebraic manipulations, the result follows for (g3)[k](w; q) after estab-
lishing that the claimed limits exists. To show this, it suffices to show that for each
0 ≤ n ≤ k − 1, the limits

lim
w→ζ ab

(1 − wk )2

(w; q)n+1(q/w; q)n+1

exist, where q = ζ h
k , a/b is reduced, and b | k . Indeed, we have that

(1 − wk )2

(w; q)n+1(q/w; q)n+1
= −wk ((w; q)k (q/w; q)k

(w; q)n+1(q/w; q)n+1

= −wk (wqn+1; q)k−n−1(w−1qn+2; q)k−n−1,

fromwhich it follows that the limit pertaining to (g3)[k] exists and equals the given expres-
sion in terms of F (w; q), along with the easy to verify fact that F (ζ a

b ; ζ
−h
k ) converges.

To obtain the result and limiting expression pertaining to (g3,3)[k], we multiply the
identity of Proposition 3.4 by (1 − wk ). As above, we similarly justify that the limit as
w → ζ a

b of (1−wk )(g3,3)[k](w; q) exists under the hypotheses given, recall that F (ζ a
b ; ζ

−h
k )

converges, and simplify to obtain the result. ��
Proof of Proposition 3.4 We apply Proposition 2.1 with r = 1, a1 = w, b1 = 0 and t =
wq−1. After some algebra and simplifying, this gives

(g3,3)[k](w; q) = w1−kq−1 (1 − wk + w2k )
1 − wk φ1

(
w
0
; q−1;wq−1

)
.

Applying [14, (2.4)], after some simplifying, we find that this equals

=q−1 w−1−k (1 − wk + w2k )
1 − wk − w−2−k (1 − wk + w2k )(1 − w)

1 − wk F (w; q)

as claimed. ��

4 The universal mock theta function g2(w; q) and the quantummodular form
H(w; q).
Analogous to the results of the previous section g3(w; q) and F (w; q), in this section we
state and prove (using in part our general results from Sect. 2) several quantum q-series
results relating the universal mock theta function g2(w; q) and affiliate

g2,3(w; q) := −1 + w
2w2

∞∑

n=0

(−wq; q)n
(wq; q)n

w−n − 1
2w

studied in [7], to the quantummodularH (w; q).Webeginwith a quantum q-series identity
at roots of unity q = ζ h

k and complex values ofw for which g2(w; q) and g2,3(w; q) naturally
converge in terms of the finite H-function (H )[k](w; q), which similar to the previous
section is, interestingly, unnaturally truncated, and analogously reveals a kind of quantum
universal mock property.

Proposition 4.1 Let q = ζ h
k with h/k reduced. For

∣∣∣ 1−wk

(−w)k−w2k

∣∣∣ < 1,
∣∣∣ 1−(−1)k
2−(−w)k−(−w)−k

∣∣∣ < 1,
wk �= 1, we have

g2(−w; q) = g2,3(−w; q) =q−1
1
2w

+ (−1)k (1 + w)(1 − wk )w−k−1

2(1 − (−w)k + (−1)k (1 − w−k ))
(H )[k](−w; q).
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Fig. 2
{∣∣∣ 1−w11

(−w)11−w22

∣∣∣ < 1
}

∩
{∣∣∣ 1−(−1)11

2−(−w)11−(−w)−11

∣∣∣ < 1
}

∩ {−2 ≤ Re(w), Im(w) ≤ 2}

Moreover, with k odd, and a/b reduced with b | k, we have

g2(−ζ a
b ; q) = g2,3(−ζ a

b ; q) =q−1 lim
w→ζ ab

(
1
2w

− (1 + w)(1 − wk )w−k−1

2(wk + w−k )
(H )[k](−w; q)

)
.

In Fig. 2, we plot the set of complexwwith−2 ≤ Re(w), Im(w) ≤ 2 satisfying the hypothe-
ses of Proposition 4.1 with k = 11.
The analogous dual-type result to the above proposition as seen in the previous section

for g3(w; q) is the following theorem (also stated as Theorem 1.4 in Sect. 1), a quantum
q-series identity for the limiting finite universal mock theta function (g2)[k](w; q) toward
pairs of roots of unity (w; q) = (ζ a

b ; ζ
h
k ) for which the (infinite) series g2(w; q) does not

converge.

Theorem 4.2 Let q = ζ h
k with h/k reduced, k odd, and let a/b be reduced with b | k. Then

lim
w→ζ ab

(1 − wk )2(g2)[k](w; q) =q−1 −ζ−a
b − (ζ−a

b − ζ−2a
b )H (ζ−a

b ; q).

As discussed in Sect. 1, the above theorem leads to the quantum modularity of the
limiting finite universal mock theta functions g∗

2 for roots of unity at which g2(ζ a
b ; ζ

h
k ) does

not converge (see also Corollary 1.5).

Corollary 4.3 For each reduced a/b with b �= 1, up to suitable normalizations, the func-
tion

g∗
2, ab

: Qo
b → C

is a weight 1/2 quantum modular form.

Next we offer a similar quantum q-series result to Theorem 4.2 for (g2,3)[k] for suitable
w in terms of the quantum modular H (w; q).
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Proposition 4.4 Let q = ζ h
k with h/k reduced. For

∣∣∣ wk−w2k

1−(−w)k

∣∣∣ < 1, wk �= 1, we have

(g2,3)[k](w; q) =q−1 − 1
2w

− 1
2wk+1

(1 − w)(1 − (−w)k − wk + w2k )
(1 − wk )

H (w; q). (4.1)

Moreover, for k odd and a/b reduced with b | k, we have

lim
w→ζ ab

(1 − wk )(g2,3)[k](w; q) =q−1 (1 − ζ−a
b )H (w; q). (4.2)

Remark 7 We also establish a non-limiting version of Theorem 4.2 for (g2)[k](w; q) for
suitable w in the course of its proof (see equation (4.3)) similar to Proposition 4.4.

4.1 Proof of Proposition 4.1, Theorem 4.2 (Thm. 1.4), and Proposition 4.4

Proof of Proposition 4.1 We begin with the fact that

− 2w2

1 − w

(
g2,3(−w; q) − 1

2w

)
= φ1

(
w

−w
; q;−w−1

)
.

To this, we apply Proposition 2.1, also using that

(H )[k](−w; q) = (φ1)[k]

(
−w
w

; q;−w
)
.

The proposition follows after simplifying c1,k (w,−w,−w−1) and some straightforward
algebraic manipulations, along with [7, Theorem 4.1]. ��

Proof of Theorem 4.2 (Thm. 1.4) We set b = z = w−1 and c = −w−1q−1 in equation (2.4)
from Proposition 2.2 to obtain after some algebra and simplifying

(1 − wk )2(g2)[k](w; q) = −w2k−1(1 − (−1)kw−k )
(1 + w−1)

(φ1)[k]

(
w−1q
−w−1 ; q

−1;w−1
)
. (4.3)

Now, for k odd and w = ζ a
b (a/b reduced) with b | k , we have that

(φ1)[k]

(
w−1q
−w−1 ; q

−1;w−1
)

= φ1

(
w−1q
−w−1 ; q

−1;w−1
)

= (1 + w−1)
2

+ (1 − w−1)(1 + w−1)
2

H (w−1; q−1),

where we have also used [14, (4.5)], and thus, the right-hand side of (4.3) with w = ζ a
b ,

b | k , and k odd becomes

−ζ−a
b − ζ−a

b (1 − ζ−a
b )H (ζ−a

b ; ζ−h
k ). (4.4)

Similar to the proof of Theorem 3.2 (Thm. 1.2), it is not difficult to check (with k odd,
b | k and a/b reduced) that the limit as w → ζ a

b of the left-hand side of (4.3) exists and
thus equals (4.4). ��
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Proof of Proposition 4.4 Proposition 4.4 (4.1) follows from Proposition 2.1 with r =
1, a1 = w, b1 = −w, and t = w, after some algebra and simplifications. Next we
prove (4.2). It is not difficult to verify that (1 − wk ) multiplied the right-hand side of
(4.1) evaluated at (w, q) = (ζ a

b , ζ
h
k ) for k odd and b | k (and a/b, h/k reduced) exists

and equals (1 − ζ−a
b )H (ζ a

b ; ζ
−h
k ). Moreover, it can be shown as in the proofs of The-

orem 3.2 (Thm. 1.2) and Theorem 4.2 (Thm. 1.4) that (for the same a/b, h/k) the limit
limw→ζ ab

(1−wk )(g2,3)[k](w; q) exists, and thus via (4.1) and the above equals the right-hand
side of (4.2) as claimed. ��

5 Antiquantum q-series
In this section, we define and investigate what we call antiquantum q-series identities,
again inspired by Lovejoy [31], to complement his notion of a quantum q-series and our
results in the previous sections. Our antiquantum q-series identities are between series
which converge and are equal to one another inside the disk |q| < 1, but our identities
hold at (dense) sets of roots of unity on the boundary for which one of the series diverges
and is “unnaturally” truncated. To illustrate thismore precisely, we first define the q-series

m(w; q) :=
∞∑

n=0

(−w)nqn2

(wq; q)n(−q; q)n

and

m̃(w; q) :=
∞∑

n=0
(w−1q2; q2)n(wq)n.

Specializations of these functions are related to Ramanujan’s 3rd-order mock theta func-
tions

f (q) :=
∞∑

n=0

qn2

(−q; q)2n
, ψ(q) :=

∞∑

n=1

qn2

(q; q2)n
, and φ(q) :=

∞∑

n=0

qn2

(−q2; q2)n
.

For example, we have

m(−1; q) = f (q),

−qm̃(−1; q) = ψ̃(−q),

qm̃(−q; q) = 1 − φ̃(−q),

where

ψ̃(−q) :=
∞∑

n=0
(−q2; q2)n(−q)n+1 and φ̃(−q) := 1 −

∑

n≥0
(−q; q2)n(−1)nq2n+1

are q-series which are equal to the mock theta functions ψ(−q) and φ(−q), respectively,
inside the disk |q| < 1, i.e., there,

ψ(−q) = ψ̃(−q) and φ(−q) = φ̃(−q).

However, these identities do not in general hold at roots of unity on the boundary (see
Remark 8 for more).

Let κw,q,k := 2 − wk

1 − w
· q

k−1

2
. We first give a general result (proved in part from our

results in the previous sections) from which we deduce antiquantum q-series identities
for mock theta functions.
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Proposition 5.1 We have that

m(w; q) = κ−1
w,q,k · m̃[k](w; q).

From this, we obtain the following antiquantum q-series identities for the third-order
mock theta functions φ and ψ .

Corollary 5.2 For odd-order roots of unity q = ζ h
k (h/k reduced and k odd), we have

−1 + φ(−q)=1
3
(−1 + φ̃[k](−q)), (5.1)

and

ψ(−q) = 1
3
ψ̃[k](−q). (5.2)

Remark 8 We explicitly point out the antiquantum nature of the identities in Corollary
5.2 as follows. We have the mock theta identity φ(−q) = φ̃(−q) inside the disk |q| < 1;
the function φ(−q) converges at odd-order roots of unity (q = ζ h

k with h/k reduced and
k odd) while φ̃(−q) diverges at odd-order roots of unity. Corollary 5.2 (5.1) shows that
a forced truncation of φ̃(−q) indeed equals φ(−q) at odd-order roots of unity, after a
modest normalization (subtracting a constant and multiplying by a constant). A similar
explanation of the antiquantum nature of (5.2) for the mock theta function ψ also holds.

Theproof of Proposition5.1 uses Proposition 2.1 aswell as the following general identity.

Proposition 5.3 For q = ζ h
k with h/k reduced and k odd, we have that

k−1∑

s=0
q2s(w; q)2s = wk−1

k−1∑

s=0
(−1)s(w; q)s.

Proof of Proposition 5.1 From [31, (2.3)] (with q 	→ q2, b = w−1q2, z = wq), we have that

m̃[k](w; q) =
(
q2

w

)k−1 ∑

0≤s≤k−1
(q2/w; q2)s(q/w; q2)s

(
w2

q

)s
q−2s2−2s

=
(
q2

w

)k−1 ∑

0≤s≤k−1
(wq−2; q−2)s(wq−1; q−2)sq−2s

=
(
q2

w

)k−1 ∑

0≤s≤k−1
(wq−1; q−1)2sq−2s.

Applying Proposition 5.3 (with q 	→ q−1, w 	→ wq−1), we find that this equals
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(
q2

w

)k−1
(wq−1)k−1

∑

0≤s≤k−1
(−1)s(wq−1; q−1)s

=
(
q2

w

)k−1
(wq−1)k−1(φ1)[k]

(
w
0
; q−1;−1

)
.

Applying Proposition 2.1, we see that this equals

(
q2

w

)k−1
(wq−1)k−1 · 2 − wk

1 − w
φ1

(
0
w
; q;−1

)
.

Using [14, (12.3)], this is
(
q2

w

)k−1
(wq−1)k−1 · 2 − wk

1 − w
· 1
2
m(w; q) = κw,q,k · m(w; q).

��

Proof of Corollary 5.2 We first prove (5.1). We apply Proposition 5.1 with w = −q and
q = ζ h

k , h/k reduced and k odd, which establishes that

2(1 + q)g3(−1; q) = 2
3
(1 + q)(1 − φ̃(−q))

or equivalently

1 − 1
2
f (q) = 1

3
(1 − φ̃(−q)). (5.3)

Now we apply the Ramanujan–Watson identity [35, p63] between the third-order mock
theta functions φ and f , which is equivalent to

2φ(−q) − f (q) = (q; q)∞
(−q; q)2∞

. (5.4)

We verify that the product on the right-hand side of (5.4) vanishes at odd-order roots of
unity q = ζ h

k (and that φ(−q) and f (q) converge for such q). The result follows from this
and (5.3).
Next we prove (5.2). We let w = −1 in Proposition 5.1 to obtain

f (q) = −4
3
ψ̃[k](−q) (5.5)

at odd-order k roots of unityq = ζ h
k . Nowweemploy anotherRamanujan-Watson identity

[35, p63] between the third-order mock theta functions ψ and f , which is equivalent to

f (q) + 4ψ(−q) = (q; q)∞
(−q; q)2∞

.

Using this, similar to the proof of (5.1), we find that f (q) = −4ψ(−q) at odd-order roots
of unity q = ζ h

k ; the result follows from this and (5.5). ��
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Proof of Proposition 5.3 Let q = ζ h
k , a primitive odd-order k root of unity. We have that

k−1∑

s=0
(−1)s(w; q)s =

k−1
2∑

s=0
(w; q)2s −

k−3
2∑

s=0
(w; q)2s+1

= (w; q)k−1 +
k−3
2∑

s=0
((w; q)2s − (w; q)2s+1)

= (w; q)k−1 +
k−3
2∑

s=0
(w; q)2s(1 − (1 − wq2s))

= (w; q)k−1 + w

k−3
2∑

s=0
q2s(w; q)2s.

On the other hand,

k−1∑

s=0
q2s(w; q)2s =

k−1
2∑

s=0
q2s(w; q)2s +

k−1∑

s= k+1
2

q2s(w; q)2s

=
k−1
2∑

s=0
q2s(w; q)2s +

k−3
2∑

s=0
qk+2s+1(w; q)k+2s+1

=
k−1
2∑

s=0
q2s(w; q)2s + (1 − wk )

k−3
2∑

s=0
q2s+1(w; q)2s+1

= qk−1(w; q)k−1 +
k−3
2∑

s=0
q2s(w; q)2s + (1 − wk )

k−3
2∑

s=0
q2s+1(w; q)2s+1

= q−1(w; q)k−1 +
k−3
2∑

s=0
q2s(w; q)2s + (1 − wk )

k−3
2∑

s=0
q2s+1(w; q)2s+1.

Thus, to prove the result, it suffices to show that

(wk − 1)
k−2∑

s=0
qs(w; q)s = (q−1 − wk−1)(w; q)k−1, (5.6)

which we now establish. From [31, (2.3)], we deduce that
k−1∑

n=0
(w; q)nqn = wk−1

or equivalently that
k−2∑

n=0
(w; q)nqn = wk−1 − (w; q)k−1q−1

so that the left-hand side of (5.6) equals

(wk − 1)(wk−1 − (w; q)k−1q−1) = w2k−1 − wk−1 + (1 − wk )2

(1 − wq−1)
q−1. (5.7)
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The right-hand side of (5.6) equals

(q−1 − wk−1)
(1 − wk )

(1 − wq−1)
. (5.8)

Subtracting (5.8) from (5.7), we obtain

w2k−1 − wk−1 + (1 − wk )2

(1 − wq−1)
q−1 − (q−1 − wk−1)

(1 − wk )
(1 − wq−1)

= (1 − wk )
(1 − wq−1)

(−wkq−1 + wk−1) + w2k−1 − wk−1

= (1 − wk )wk−1 + w2k−1 − wk−1

= 0

as wanted. ��
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