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Symmetry, Almost

Amanda Folsom
Some definitions of the word symmetry include “correct or
pleasing proportion of the parts of a thing,” “balanced pro-
portions,” and “the property of remaining invariant under
certain changes, as of orientation in space.” One might
think of snowflakes, butterflies, and our own faces as nat-
urally symmetric objects—or at least close to it.

Figure 1. Natural and mathematical symmetries

Mathematically one can also conjure up many symmet-
ric objects: even and odd functions, fractals, certain matri-
ces, and modular forms, a type of symmetric complex func-
tion.

In more detail, modular forms, defined on the upper
half of the complex plane ℍ, are (among other things) es-
sentially symmetric with respect to the action of SL2(ℤ)
(the set of 2 × 2 integer matrices with determinant 1) on
ℍ. A matrix (𝑎 𝑏

𝑐 𝑑) in the group SL2(ℤ) acts on 𝜏 in ℍ by

fractional linear (a.k.a. Möbius) transformation, 𝛾 ⋅ 𝜏 =
(𝑎𝜏+𝑏)/(𝑐𝜏+𝑑), and this action yields beautiful sym-
metries in ℍ.

Namely, in Figure 2, we see the upper half-plane divided
into fundamental domains—loosely speaking, each region
(including the gray shaded region, a standard fundamen-
tal domain) is a set of representatives for the orbits of the
group action described above (where we must more pre-
cisely consider which boundary points to include). Due
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Figure 2. Fundamental domains
to the symmetries satisfied by a modular form, we need
only to understand it on a fundamental domain in order
to understand it everywhere in ℍ. For example, if 𝑓 is
a modular function (a weight 0 modular form), it satisfies
𝑓(𝛾 ⋅ 𝜏) = 𝑓(𝜏) for all 𝛾 ∈ SL2(ℤ). “Modular forms
are everywhere,” as the title of Don Zagier’s 2017 birthday
conference boasted, and their properties surpass aesthetics;
e.g., modular forms are known to be connected to a num-
ber of well-known problems, including Fermat’s Last The-
orem, Monstrous Moonshine, the Birch and Swinnerton-
Dyer Conjecture, and more.

Figure 3. The modular 𝑗-function
In Figure 3, we see one interpretation of a graph of the

modular function denoted by 𝑗, a hauptmodulwhich gener-
ates the field ofmodular functions. There, we see the upper
half-plane, with the argument of a complex value of 𝑗 en-
coded by the color shown; red corresponds to the positive
real axis, and movement in the counterclockwise direction
runs through the colors of the rainbow. The magnitude of
a complex value is represented by the darkness of the color.
(For example, the figure suggests 𝑗(0) is infinite, 𝑗(𝑖) (at
center) is fairly large and real, and 𝑗(𝑒2𝜋𝑖/3) is zero, all of
which are true.) The symmetries of 𝑗 with respect to the
tiling of ℍ by fundamental domains suggested in Figure 3
are apparent.

All of the things discussed above, whether naturally sym-
metric ormathematically symmetric, exhibit a kind of beauty,
so would they lose some of their innate beauty if their sym-
metries were altered? Alternatively, what could possibly be

JANUARY 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 87



JMM 2019 Lecture Sampler

Figure 4. Facial symmetries

gained with slight symmetric imperfections?
Consider Figure 4, in which the images shown are ren-
dered by reflecting one half of a drawing of a face over a
central axis: what to make of any “biological preference”
towards symmetric human faces? We now also have vari-
ous notions of perturbed modular forms: as their names
may suggest, quasimodular forms, false or partial theta func-
tions, and mock modular forms are all not-quite-but-close to
being modular in the sense of the symmetric characteriza-
tion given above. For example, (with notation as above) a
mock modular form 𝑚 satisfies 𝑚(𝛾 ⋅ 𝜏) = 𝜌𝛾,𝜏𝑚(𝜏)+
ℎ𝑚(𝜏), for some (nontrivially produced) “error function”
ℎ𝑚 and explicit factor 𝜌𝛾,𝜏. Even more, we can get rid of
the error to modularity ℎ𝑚 attached to a mock modular
form 𝑚. That is, by (nontrivially) adding to 𝑚 a suitable
function 𝑚−, the sum 𝑚 ∶= 𝑚 + 𝑚− becomes more or
less as symmetric as 𝑗: we have𝑚(𝛾⋅𝜏) = 𝜌𝛾,𝜏𝑚(𝜏). But
at what expense does𝑚 gain symmetry by this addition of
𝑚−?

If modular forms are everywhere, then perhaps mock
modular forms are almost everywhere. Over the course of
the last 10–15 years, a more general theory of harmonic
Maass forms has developed, however, earlier footprints ap-
pear in Maass’ work from the 1950s and, as we have more
recently discovered, in Ramanujan’s mock theta functions
from 1920. The theory of mock modular forms has also
seen applications in a number of subjects including com-
binatorics, mathematical physics, elliptic curves, quantum
modular forms, and more.

This last subject, quantum modular forms, initially de-
veloped by Zagier in 2010, has been of particular inter-
est lately. Like mock modular forms, quantum modular
forms exhibit symmetry properties up to an error function
as explained in the preceding paragraph, however, the do-
mains of a quantum modular form and a mock modular
form are notably different: quantum modular forms are
defined in ℚ, the set of rational numbers, as opposed to
ℍ, the upper half of the complex plane. Under the map-
ping 𝜏 ↦ 𝑒2𝜋𝑖𝜏, mock modular forms are defined inside
the unit disk, and rational numbers correspond to roots of
unity on the boundary. Despite their differing domains,

Figure 5. A radial limit

it has been a question of interest to understand the rela-
tionships between these almost symmetric functions and
to farm the fruits of such relationships. See Figure 5, where
a radial limit from inside the unit disk to a root of unity
on the boundary is suggestively drawn.

Please joinme at the 2019 AMS–MAA JointMeetings for
an accessible discussion of these and other questions sur-
rounding symmetry, almost, guided by the topic of modu-
lar forms. The origins of these questions are rooted in the
past, while some fascinating and surprising answers come
from just the last 10–15 years.
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