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1. Preamble

Modular forms have played central and far-reaching roles in number theory and math-
ematics over the last two centuries. Their footprints can be seen in the elliptic functions 
of the early 1800s, and their prominence has only risen since then. The theory and impor-
tance of their younger descendants, mock modular forms, has evolved in many analogous 
ways. Among the many papers written in the subject of mock modular forms are three 
excellent articles which are accessible to the non-specialist, and which we recommend 
to the readers of this article: Duke’s 2014 article [52] in the the Notices of the AMS, 
Ono’s 2010 article [119] in the Notices of the AMS, and Zagier’s 2007 Séminaire Bour-
baki article [137]. These articles highlight different aspects of the history, theory, and 
applications of mock modular forms, including discussions of Ramanujan’s mock theta 
functions from 1920. The general term mock modular form was not defined in the lit-
erature until 2007 [137], and we now know in hindsight that Ramanujan’s mock theta 
functions are among the oldest examples.

In this expository article, we begin by offering a few concrete examples of mock mod-
ular forms in Section 2, which can be viewed as companions to some familiar ordinary 
modular forms. We offer these examples as previews to the more formal definitions and 
basic properties given in Section 3. In all of the following sections, we offer several 
perspectives on mock modular forms from the standpoint of different areas in which 
mock modular forms have played a role – some are areas within number theory, some 
are not. They are: combinatorics (Section 2), q-series and mock theta functions (Sec-
tion 4), mathematical physics (Section 6), number theory (i.e., elliptic curves and traces 
of singular moduli, Section 7), and Moonshine (Section 8). We also devote two sec-
tions to describing some of the essential results of Bruinier and Funke (Section 3), and 
Zwegers (Section 5), both of which have been highly influential, and have made tremen-
dous impacts on the development of the theory of mock modular forms over the last 15 
years.

These diverse perspectives exhibit the strength and scope of the theory of mock modu-
lar forms. In the remainder of this section, we give a glimpse of some of the results which 
illustrate these aspects of the theory of mock modular forms, and which are discussed in 
more detail in this article.

From the perspective of combinatorics (Section 2), we can now show that various 
combinatorial generating functions are also mock modular forms. Armed with mock 
modularity, we have been able to leverage new information about the underlying com-
binatorial functions. This is very much parallel to the well-known interplay between 
ordinary modular forms and combinatorics. For example, a long-standing conjecture of 
Andrews and Dragonette from the 1960s on ranks of integer partitions has been resolved 
using the theory of mock modular forms. The conjecture, now theorem (Theorem 2.1), 
gives a beautiful exact formula for a partition rank function analogous to the revered 
Hardy–Ramanujan–Rademacher exact formula for the partition function. We are also 
sometimes able to exploit mock modularity to establish combinatorial congruence (divis-
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ibility) properties, asymptotic properties, and more. Conversely, we can also sometimes 
use combinatorial theory to shed new light on mock modular forms.

From the perspective of the mock theta functions (Section 4), the theory of mock 
modular forms has played a monumental role. Since the time of their inception in 1920, 
it was not well-understood how exactly Ramanujan’s curious “modular-like” mock theta 
functions fit into the theory of modular forms. Almost a century later, marking a major 
breakthrough, this question was resolved using the theory of mock modular forms (see 
Theorem 4.3). Moreover, this new realization surrounding the mock theta functions 
played a key role in catapulting the development of the theory of mock modular forms 
and the overarching theory of harmonic Maass forms (see Section 3 and Section 5).

From the perspective of mathematical physics (Section 6), mock modular forms have 
also played prominent roles in recent years. For example, the surrounding theory has led 
to a proof of a conjecture of Vafa and Witten in support of S-duality. The conjecture, 
now theorem (Theorem 6.1), rests in the setting of topologically twisted gauge theory, 
and establishes the mock modularity of associated Euler number generating functions. 
Exploiting this mock modularity subsequently led to exact analytic Hardy–Ramanujan–
Rademacher-like formulas for the Euler numbers. Also within mathematical physics, the 
theory of mock modular forms has led to proofs of conjectures of Moore and Witten 
on Donaldson invariants (Conjecture 6.2), certain correlation functions for a supersym-
metric topological gauge theory. In another direction, within string theory, the theory of 
mock modular forms has shed light on the quantum theory of black holes. In particular, 
we now understand the degeneracies of single centered black holes as Fourier coefficients 
of a mixed mock Jacobi form (see Section 6.3). While strongly motivated from a physi-
cal standpoint, this has also led to further developments in the theory of mock modular 
(Jacobi) forms.

From the perspective of number theory (Section 7), there are numerous applications of 
the theory of mock modular forms. For example, we now have a mock modular extension 
of Zagier’s foundational work relating traces of singular moduli arising from quadratic 
forms with negative discriminants to Fourier coefficients of modular forms. Theorem 7.1
beautifully completes the picture to include positive discriminants, illuminating the roles 
played by mock modular forms and cycle integrals, and also the interplay between mock 
modular forms and Zagier’s original modular theory. Also within number theory, we now 
see how elliptic curves may be used to construct mock modular forms (Theorem 7.2), 
and how associated mock modular Fourier coefficients encode information about the 
vanishing of L-values and derivatives (Theorem 7.3). By known results towards the Birch 
and Swinnerton-Dyer Conjecture, a major area of research in number theory, this gives 
results on the ranks of quadratic twist elliptic curves over Q.

Finally, from the perspective of Moonshine (Section 8), mock modular forms have 
been used to establish, and prove, new Moonshine theories beyond the original monster 
group, the largest of the finite sporadic simple groups. This is quite remarkable, as we 
now know decades after Borcherds’ celebrated resolution of Monstrous Moonshine, that 
coefficients of mock modular forms, as opposed to ordinary modular forms, are graded 
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traces arising from other types of groups (see Conjecture 8.1, which is now a theorem). 
This connection between Moonshine and mock modular forms has since opened the door 
to further explorations on the algebraic side of the story as well.

We hope that this article is of interest to both number theorists and enthusiasts – to 
any reader who is interested in or curious about the history, development, and applica-
tions of the subject of mock modular forms, as well as some amount of the mathematical 
details that go along with them. The several perspectives offered in this article are by no 
means meant to be an exhaustive list. In addition to the articles [52,119,137] mentioned 
above, there are many other accessible articles in the subject which we recommend, in-
cluding [8,9,81,114,118]. This article is also a more recent, more detailed, cousin to [65], 
and a less comprehensive and less detailed predecessor to [24].

2. Combinatorics and first examples

Modular forms often serve as “combinatorial” generating functions, in the sense that 
their Fourier coefficients may enumerate quantities of interest. For example, with q =
e2πiτ , τ ∈ H := {τ ∈ C | Im(τ) > 0}, we have

q
1
24 η−1(τ) =

∞∑
n=0

p(n)qn, E2k(τ) = 1 − 4k
B2k

∞∑
n=1

σ2k−1(n)qn, θ4(τ) =
∞∑

n=0
r4(n)qn.

(2.1)

On the left-hand sides of the equalities in (2.1) we see the weight 1/2 modular forms

η(τ) := q
1
24

∞∏
n=1

(1 − qn) and θ(τ) :=
∞∑

n=−∞
qn

2
,

and the weight 2k modular Eisenstein series E2k, where k is any integer at least equal to 2. 
On the other hand, on the right-hand sides in (2.1), we have the combinatorial functions 
p(n) := #{partitions of n} (the partition function), σm(n) :=

∑
d|n,d>0 d

m (the mth 
power divisor function), and r4(n), which counts the number of representations of n as 
a sum of 4 squares. A partition of n is any non-increasing sequence of positive integers 
whose sum is n (e.g. {3}, {2, 1}, {1, 1, 1} are the three partitions of n = 3, so p(3) = 3). 
See for example [10,136] for further background on many of the things discussed in this 
section.

Using modular properties of functions like those in (2.1), one can often leverage in-
formation about the combinatorial functions which they encode. A notable example of 
this is found in the work of Hardy and Ramanujan, who developed the Circle Method 
in analytic number theory in order to determine the asymptotic behavior of the parti-
tion function p(n) as n → ∞. Their work heavily relies upon the modular properties 
satisfied by Dedekind’s η-function. Rademacher later extended the work of Hardy and 
Ramanujan and established the beautiful exact formula
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p(n) = 2π
(24n− 1) 3

4

∞∑
m=1

Am(n)
m

I 3
2

(
π
√

24n− 1
6m

)
, (2.2)

where I 3
2

is the modified Bessel function of the 1st kind, and Am is a Kloosterman-like 
exponential sum. It is remarkable that the infinite sum of complex numbers on the 
right-hand side of (2.2) converges to a positive integer, and doubly remarkable that this 
positive integer is a fundamental combinatorial function which counts integer partitions. 
Using another modular property, namely the finite dimensionality of relevant vector 
spaces of modular forms, leads to non-trivial combinatorial identities for divisor functions 
such as

2640
n−1∑
r=1

σ3(r)σ9(n− r) = σ13(n) − 11σ9(n) + 10σ3(n),

as well as a simple exact formula for r4(n) as 8 multiplied by the sum of the positive 
divisors of n which are not divisible by 4. Conversely, combinatorial functions which 
appear as modular Fourier coefficients can sometimes be used to reveal new information 
about the modular forms which encode them. For example, counting partitions according 
to the sizes of their Durfee squares shows that the partition generating function in (2.1), 
and hence the reciprocal of the modular η-function (up to multiplication by q

1
24 ), can be 

expressed as
∞∑

n=0

qn
2

(q; q)2n
, (2.3)

a q-hypergeometric series, also called a basic hypergeometric series, for which there is 
a rich theory in and of itself [13,64,78]. Here and throughout, the q-Pochhammer sym-
bol is defined by (a; q)n :=

∏n−1
j=0 (1 − aqj), for n ∈ N, and (a; q)0 := 1. For more on 

q-hypergeometric series and mock modular forms, see Sections 4–5.
In the remainder of this section, we give some concrete examples of functions which 

may be viewed as mock modular counterparts to the three combinatorial modular forms 
from (2.1). We offer these example functions before giving the formal definition of a mock 
modular form in Section 3, with the intention that these functions act as a preview to 
the formalisms established there. We begin with the holomorphic weight 2 Eisenstein 
series E2, defined using (2.1) with k = 1. While E2 is not modular, it is well-known to 
have a non-holomorphic completion (a term which we discuss further in Section 4)

E∗
2 (τ) := E2(τ) − 3

πv
, (2.4)

where here and throughout we let τ = u + iv ∈ H, with u ∈ R, v ∈ R+. The non-
holomorphic function E∗

2 satisfies the following weight 2 transformation properties under 
the generators of the modular group SL2(Z):

E∗
2 (τ + 1) = E∗

2 (τ), E∗
2 (−1/τ) = τ2E∗

2 (τ).
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The function E∗
2 additionally satisfies a moderate growth condition, so its holomorphic 

part E2 may be viewed as a prototype of a mock modular form. That is, the holomor-
phic Eisenstein series E2 does not exhibit a proper transformation law with respect to 
SL2(Z), but when a suitable non-holomorphic part (namely −3/πv) is added to E2(τ), 
the resulting non-holomorphic function transforms correctly. This situation is typical of a 
general mock modular form, as we formally explain in Section 3. As an aside, we remark 
that E2 (resp. E∗

2 ) is also an example of a quasimodular form (resp. almost holomorphic 
modular form) (see [100] by Kaneko and Zagier).

Another foundational example of a mock modular form, which, like E2 was studied 
before the term mock modular form was defined in the literature, arises from the weight 
3/2 modular form θ3(τ). If we define its Fourier coefficients by θ3(τ) =:

∑
n≥0 r3(n)qn, 

then it was proved by Gauss that

r3(4n + 1) = 12H(16n + 4), r3(4n + 2) = 12H(16n + 8), r3(8n + 3) = 24H(8n + 3),

where the values H(n) are the Hurwitz class numbers for discriminants −n. Hurwitz 
class numbers count the number of equivalence classes of binary quadratic forms of a 
given discriminant, where each class C is counted with multiplicity 1/Aut(C); they are 
also related to class numbers of rings of integers in imaginary quadratic fields. Zagier 
studied the generating function for the H(n) in [134], and his results can be reinterpreted 
using the more recent terminology of mock modular forms as saying that the following 
non-holomorphic completion of the generating function for Hurwitz class numbers

− 1
12 +

∞∑
n=1

H(n)qn + 1
4
√
π

∞∑
n=−∞

nΓ
(
−1

2 , 4πn
2v
)
q−n2

+ 1
8π

√
2v

(2.5)

is a weight 3
2 harmonic Maass form of moderate growth on Γ0(4). The non-holomorphic 

part in (2.5) is defined using the incomplete gamma function (initially defined for α > 0
and w ∈ C, or α ∈ C and w ∈ H, and which can be analytically continued),

Γ(α,w) :=
∞∫
w

e−ttα−1dt. (2.6)

The holomorphic part in (2.5), namely the generating function for Hurwitz class numbers 
(including the constant term), can be regarded as a mock modular form.1

Lastly, we consider a refined partition statistic called the rank of a partition, which 
was originally defined by Dyson [60] to be the largest part of the partition minus the 
number of parts of the partition (e.g. the partition {3, 3, 3, 1} of 10 has rank 3 −4 = −1). 

1 Throughout this article, for ease of notation, we may slightly abuse terminology and refer to a function 
as a modular form, mock modular form, harmonic Maass form, etc. when in fact the function must be 
multiplied by a power of q and/or renormalized by τ �→ κτ , in order to exhibit suitable transformation 
properties.
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Compared to integer partitions, which are a very natural construct, their ranks may seem 
artificial without further context. In fact, Dyson defined ranks in order to combinatorially 
explain two of Ramanujan’s celebrated partition congruences, p(5n +4) ≡ 0 (mod 5) and 
p(7n + 5) ≡ 0 (mod 7), which hold for every non-negative integer n. That is, if we let 
N(m, t; n) count the number of partitions of n whose rank is equal to m (mod t), Dyson 
conjectured, and Atkin and Swinnerton-Dyer proved [17], that for any fixed positive 
integer of the form 5n +4 (resp. 7n +5), each set N(m, 5; 5n +4) (resp. N(m, 7; 7n +5)) 
is equal in size, where m runs through a set of representatives for the integers modulo 5 
(resp. 7). A combinatorial argument using Durfee squares similar to the one used to 
establish (2.3) leads to the well-known identity for the two-variable generating function 
for the partition rank function N(m, n) := p(n | rank m)

R(ζ; q) :=
∞∑

n=0

∞∑
m=−∞

N(m,n)ζmqn =
∞∑

n=0

qn
2

(ζq; q)n(ζ−1q; q)n
, (2.7)

which reduces to the ordinary partition generating function when ζ = 1. In light of (2.1), 
it is natural to ask about the modular properties, if any, of R(ζ; q) at other values of ζ. 
Perhaps the next simplest case to consider is the case ζ = −1, which gives

R(−1; q) =
∞∑

n=0
αf (n)qn =

∞∑
n=0

qn
2

(−q; q)2n
=: f(q), (2.8)

where αf (n) := N(0, 2; n) − N(1, 2; n) is a difference of two rank functions. The 
q-hypergeometric series f(q) on the right-hand side of (2.8) is not recognizable as a 
modular form, as is the case (in (2.7)) when ζ = 1. However, f(q) is one of Ramanujan’s 
original mock theta functions, curious q-series defined in his last letter to Hardy (see 
Section 4). For the remainder of this paragraph we put the cart before the horse and 
elaborate a bit on the mock modular properties of f(q), and more generally R(ζ; q), to 
foreshadow some of the results in Sections 3–5. Thanks to work of Zwegers, to which 
we devote Section 5 and part of Section 4, we now realize that the combinatorial gen-
erating function in (2.8) is also a mock modular form, as are all of Ramanujan’s mock 
theta functions, resolving the decades-long question on the “modularity” of the mock 
theta functions. After Zwegers, in their paper [33], Bringmann and Ono considered the 
more general question of understanding the modular properties of R(ζ; q) as a function 
of τ (or q) for fixed ζ. Indeed, by adopting results and methods of Zwegers [141] and 
Gordon–McIntosh [80], they proved that when ζ = e2πi a

b is any fixed root of unity not 
equal to 1, Dyson’s rank function can be completed to the following non-holomorphic 
modular form

q−�b/24R(e2πi a
b ; q�b) + i(3−1	b)

1
2 sin(πab )

i∞∫
−τ

Θ(ab ; 	bz)√
−i(z + τ)

dz. (2.9)
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Here, Θ is a certain weight 3/2 ordinary modular theta function, and 	b ∈ N. In particu-
lar, results from [33] show that the function in (2.9) is an example of a harmonic Maass 
form of weight 1/2 and level 144, and its holomorphic part q−�b/24R(e2πi a

b ; q�b), essen-
tially Dyson’s rank function, is among the first examples of a mock modular form (see 
also Section 3). Zagier [137] later simplified some of the results from [33] by re-writing 
the rank generating function using an identity of Gordon–McIntosh [80] as follows2 (with 
q = e2πiτ , ζ = e2πiz, z /∈ Z + Zτ):

R(ζ; q) = −2 sin(πz)
(

q
1
24 η(3τ)3

η(τ)ϑ(3z; 3τ) − q−
1
8 ζ−1μ(3z,−τ ; 3τ) + q−

1
8 ζμ(3z, τ ; 3τ)

)
.

(2.10)

Here, the Jacobi ϑ-function, a two-variable function which specializes to a multiple of θ
above, is given in Definition 5.1, and Zwegers’ function μ is given in Definition 5.2. Upon 
suitable specialization of its parameters, the function μ becomes a mock modular form, 
a fact we explain in Section 5. Zagier’s expression (2.10), combined with transformation 
properties for η, ϑ, and μ, can be used to establish another proof of the mock modularity 
of the two-variable partition rank generating function R when ζ is any root of unity 
not equal to 1. Garvan also studied Dyson’s rank function in [77], in which he extends 
and strengthens some related results from [33,34], and also [2] by Alhgren and Treneer, 
including the transformation properties for R.

Using the mock modularity of R(−1; q) = f(q), Bringmann and Ono [32] proved a 
conjecture of Andrews and Dragonette [7], and established the following exact formula 
for the combinatorial coefficients αf (n) = N(0, 2; n) − N(1, 2; n) of f(q), analogous to 
the Hardy–Ramanujan–Rademacher formula (2.2).

Theorem 2.1. If n ∈ N, then

αf (n) = π(24n− 1)− 1
4

∞∑
m=1

(−1)
⌊
m+1

2
⌋
A2m

(
n− m(1+(−1)m)

4

)
m

I 1
2

(
π
√

24n− 1
12m

)
.

(2.11)

In addition to f , other of Ramanujan’s mock theta functions encode combinatorial 
data, for example, the coefficients of his mock theta function

ω(q) :=
∞∑

n=0

q2n(n+1)

(q; q2)2n+1
(2.12)

count partitions whose summands, except the last, form pairs of consecutive non-negative 
integers (see [11] for details). Garthwaite established an exact formula similar to (2.2)

2 In (2.10), we have corrected a minor typographical error in [137].
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and (2.11) for these combinatorial coefficients in [75]. We discuss the mock modular prop-
erties of Ramanujan’s mock theta functions in general, including f and ω, in Section 4, 
but first turn to the formal definitions of harmonic Maass forms and mock modular 
forms in Section 3. In addition to the references already mentioned in this section, see 
for example [1,14,16,27–30,66,76,129] by Ahlgren, Andrews, Bringmann, Dixit, Garvan, 
Holroyd, Lovejoy, Mahlburg, Ono, Rhoades, Vlasenko, Waldherr, Yee, and Zwegers, for 
some additional recent results relating mock modular forms and combinatorial functions. 
In particular some of these works (and others mentioned in this section) establish divisi-
bility properties (i.e. congruence properties) of combinatorial mock modular coefficients 
by exploiting the mock modularity of associated generating functions. This is another 
natural and important area of study at the interface of combinatorics and (mock) mod-
ular forms.

3. Definitions and basic properties

The previews of some mock modular forms given in the previous section show that they 
share various characteristics. The functions E2, the generating function for Hurwitz class 
numbers, and Dyson’s rank function R(ζ; q) are all holomorphic functions which fail to 
exhibit ordinary modular transformation properties, however the ways in which they fail 
to do so can be corrected. That is, they can be completed to form the non-holomorphic 
functions in (2.4), (2.5), and (2.9), each of which does transform like an ordinary modular 
form. As mentioned, each of these non-holomorphic modular forms satisfies the definition 
of a harmonic Maass form, however, the growth conditions in the cusps satisfied by (2.4)
and (2.5) slightly differ from those satisfied by (2.9). As a result, these functions would 
be classified as slightly different types of harmonic Maass forms as we explain below. 
In this section, we formalize and generalize some of the observations from the previous 
section surrounding the three examples discussed there. In particular, we formally define 
harmonic Maass forms and mock modular forms, and explain some relationships to 
ordinary modular forms.

As in the previous section, we let τ = u + iv ∈ H, where u ∈ R, and v ∈ R+, and 
let q = e2πiτ . In words, harmonic Maass forms are real-analytic functions which satisfy 
three properties: i) they transform like ordinary modular forms on a suitable subgroup 
of SL2(Z), ii) they are annihilated by a Laplacian operator, and iii) they satisfy certain 
growth conditions at cusps. These functions were originally defined by Bruinier and 
Funke in their 2004 work on theta lifts [37]. The operator which annihilates a harmonic 
Maass form (of weight k) is the weight k Laplacian operator, defined by

Δk := −v2
(

∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
= −4v2 ∂

∂τ

∂

∂τ
+ 2ikv ∂

∂τ
. (3.1)

In what follows, we will consider forms for which k ∈ 1
2Z. As is the case with ordinary 

modular forms, the transformation laws satisfied by harmonic Maass forms differ de-
pending on whether or not k ∈ 1 + Z. To introduce the formal definition of a harmonic 
2
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Maass form, we let 
( ·
·
)

denote the Kronecker symbol, 
√· denote the principal branch of 

the holomorphic square root, and for odd integers d, we let εd equal 1 or i, depending 
on whether d ≡ 1 (mod 4) or d ≡ −1 (mod 4). Following Bruinier and Funke [37], we 
have the following definitions.

Definition 3.1. Let k ∈ 1
2Z, and let Γ = Γ0(N) for some N ∈ N where Γ ⊆ Γ0(4) if 

k ∈ 1
2 + Z. A weight k harmonic Maass form on Γ is any smooth function M : H → C

satisfying the following properties.

i) For all 
(
a b
c d

)
∈ Γ and all τ ∈ H, we have that

M

(
aτ + b

cτ + d

)
=
{

(cτ + d)kM(τ) if k ∈ Z,(
c
d

)2k
ε−2k
d (cτ + d)kM(τ) if k ∈ 1

2 + Z.

ii) We have that Δk(M) = 0.
iii) There exists a polynomial PM (τ) ∈ C[q−1], called the principal part of M at ∞, 

such that

M(τ) − PM (τ) = O
(
e−εv
)

as v → ∞ for some ε > 0. Analogous conditions are required at all cusps.

We denote the space of all such forms by Hk(Γ). One may also consider harmonic 
Maass forms on Γ0(N) for some N ∈ N, which transform with a (mod N) Dirichlet 
character χ. In this case, the right-hand side of the transformation law in part i) of 
Definition 3.1 is multiplied by χ(d). Harmonic Maass forms which transform on other 
finite index subgroups of the modular group can also be defined in the obvious way.

If we replace the growth condition in part iii) of Definition 3.1 by M(τ) = O (eεv)
as v → ∞ for some ε > 0, then we call M a weight k harmonic Maass form of mod-
erate growth on Γ. The non-holomorphic weight 2 Eisenstein series (2.4) and Zagier’s 
non-holomorphic completion of the Hurwitz class number generating function (2.5) are 
examples of harmonic Maass forms of moderate growth, while the non-holomorphic com-
pletion of Dyson’s rank function (2.9) is an example of a harmonic Maass form according 
to Definition 3.1.

The word “harmonic” is used to describe the Maass forms in Definition 3.1 due to the 
fact that they are annihilated by Δk. We remark that it has also been a natural question 
in the literature to study eigenfunctions of Δk which satisfy i) and iii) in Definition 3.1, 
but which have eigenvalues that are not necessarily equal to 0. Harmonic Maass forms 
are close relatives to the classical Maass forms introduced by Maass in 1949, which are 
weight 0 eigenfunctions of Δ0, and which have a less relaxed growth condition [43,79,98]. 
In general, it is a difficult problem to construct Maass cusp forms, rendering their study 
particularly interesting. Maass constructed such forms for some congruence subgroups, 
and for SL2(Z) in particular, Selberg proved existence. The problem of determining 
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(non-)existence of Maass cusp forms on non-congruence subgroups remains a major open 
problem today [124]. Like ordinary modular and Maass forms, harmonic Maass forms 
have Fourier expansions. The following lemma is established in [37].

Lemma 3.2. If M ∈ Hk(Γ), with k ∈ 1
2Z \{1}, and Γ ∈ {Γ0(N), Γ1(N)} for some N ∈ N, 

then M has Fourier expansion

M(τ) =
∞∑

n=rf

c+M (n)qn +
−1∑

n=−∞
c−M (n)Γ (1 − k, 4π|n|v) qn,

for some integer rf .

Using Lemma 3.2, we see that the Fourier expansions of harmonic Maass forms split 
naturally into two parts. To this end, we have the following definitions.

Definition 3.3. Assume the notation and hypotheses as in Lemma 3.2. We define the
holomorphic part of a harmonic Maass form M ∈ Hk(Γ) by

M+(τ) :=
∞∑

n=rf

c+M (n)qn,

and the non-holomorphic part of M by

M−(τ) :=
−1∑

n=−∞
c−M (n)Γ(1 − k, 4π|n|v)qn.

We remark that similar expansions as in Lemma 3.2 hold for forms of moderate 
growth, and in the case of weight 1. For more on weight k = 1, see the recent work of 
Duke and Li, which shows that Fourier coefficients of weight 1 harmonic Maass forms are 
related to complex Galois representations associated to weight 1 newforms. We also have 
analogous notions of holomorphic and non-holomorphic parts when in slightly different 
settings. For example, − 1

12 +
∑∞

n=1 H(n)qn is the holomorphic part of the weight 3/2
harmonic Maass form in (2.5), and the remaining sum involving the incomplete gamma 
function plus the term involving 1/

√
v is its non-holomorphic part.

One immediate relationship between harmonic Maass forms and ordinary modular 
forms is the following. If M ∈ Hk(Γ) is a harmonic Maass form for which M− = 0, then 
we have that M ∈ M !

k(Γ), the space of weight k weakly holomorphic modular forms 
on Γ. By weakly holomorphic, we mean holomorphic on H with possible poles in the 
cusps. In other words, harmonic Maass forms with trivial non-holomorphic parts are 
weakly holomorphic modular forms. The reverse containment holds as well: a weakly 
holomorphic modular form is a harmonic Maass form with M− = 0. A less immediate 
relationship between harmonic Maass forms and ordinary modular forms can be seen by 
applying the differential operator
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ξk := 2ivk ∂

∂τ
.

It is often useful to note that the Laplacian operator Δk from (3.1) may be factored in 
terms of the ξ-operator as follows:

Δk = −ξ2−kξk.

The following theorem due to Bruinier and Funke [37] shows how the ξ-operator maps 
harmonic Maass forms to cusps forms. Moreover, it reveals how the Fourier expansions 
of these ordinary modular forms in the image of ξ are built from the Fourier coefficients 
of the non-holomorphic parts of harmonic Maass forms. Below, we let Sk(Γ) denote the 
space of modular cusp forms of weight k on Γ.

Theorem 3.4. Assume the notation and hypotheses as in Lemma 3.2, and let k ≤ 0. We 
have that

ξk : Hk(Γ0(N)) � S2−k(Γ0(N)).

Explicitly, for M ∈ Hk(Γ0(N)), we have that

ξk(M(τ)) = ξk(M−(τ)) = −(4π)1−k
∞∑

n=1
c−M (−n)n1−kqn.

Slightly modifying Zagier’s original definition, [137], the cusp forms in Theorem 3.4, 
as well as the holomorphic parts of harmonic Maass forms, have special names.

Definition 3.5.

i) A mock modular form of weight k is the holomorphic part M+ of a harmonic Maass 
form of weight k.

ii) If M ∈ Hk(Γ0(N)), we refer to the cusp form ξk(M(τ)) in Theorem 3.4 as the shadow
of the mock modular form M+.

We point out that it is also natural to restrict the definition of a mock modular 
form to encompass harmonic Maass forms whose non-holomorphic parts are non-trivial. 
“Shadow” can also be attached to more general forms (see [24]).

The term mock modular form in Definition 3.5 reflects the fact that Ramanujan’s 
mock theta functions (e.g. f(q) from Section 2) were among the first examples of mock 
modular forms, thanks to work of Zwegers [141]. In Sections 4–5, we discuss Ramanujan’s 
mock theta functions and Zwegers’ results in the context of harmonic Maass forms in 
more detail.

Having established the terminology in Definition 3.5, we state a last result in this 
section, which shows that the non-holomorphic parts of mock modular forms may be 
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expressed in a different, perhaps simpler, way than as in Lemma 3.2. That is, the non-
holomorphic part of a harmonic Maass form is a period integral of the (complement of 
the) corresponding mock modular form’s shadow.

Lemma 3.6. Assume the notation and hypotheses as above. Let f ∈ Hk(Γ0(N)), and 
suppose the mock modular form M+ has shadow g ∈ S2−k(Γ0(N)). Then the non-
holomorphic part M− satisfies

M−(τ) = 2k−1i

i∞∫
−τ

g(−w)
(−i(w + τ))k dw.

We have already seen a non-holomorphic part of this shape in (2.9), and will see more 
in the following sections (e.g. Sections 4–6).

As a final remark, we mention that the kernel of the map in Theorem 3.4 is ker (ξk) =
M !

k(Γ0(N)). This shows that given a particular cusp form, there are in fact infinitely 
many harmonic Maass forms with that shadow. In general, it is of interest to construct 
a given lift of a cusp form which is in some way canonical (see Section 7 and references 
therein for more). In the next section, we discuss Ramanujan’s mock theta functions as 
mock modular forms.

4. Ramanujan’s mock theta functions

Ramanujan’s mock theta functions are a collection of 17 q-hypergeometric series orig-
inally defined in Ramanujan’s last letter to Hardy from 1920 [18]; two such functions are 
the functions f and ω defined in (2.8) and (2.12), respectively. All others may be found, 
for example, in [81], which provides a comprehensive treatment of numerous aspects of 
the mock theta functions and their generalizations. See also the works of Andrews [8,9,
12], which have had a great impact on the study of mock theta functions.

Ramanujan called his functions “mock theta functions” due to the fact that they 
resemble ordinary modular forms in certain ways. In particular, he studied their asymp-
totic relationship to ordinary modular theta functions. Ramanujan did not phrase his 
characterization of mock theta functions exactly as in Definition 4.1 below, but he nearly 
did. In light of this, we attribute the following “definition” to him.

Definition 4.1 (Ramanujan). A mock theta function m is a function defined on H satis-
fying the following properties.

i) There are infinitely many roots of unity ζ for which m(τ) grows exponentially as 
q = e2πiτ approaches ζ radially from inside the unit disk.

ii) For every root of unity ζ, there exists a (weakly holomorphic) modular form Bζ and 
a rational number αζ such that
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m(τ) − qαζBζ(τ)

is bounded as q → ζ radially from within the unit disk.
iii) There does not exist a single (weakly holomorphic) modular form B that satisfies ii).

We compare this definition to the modern definition of a mock modular form from 
Section 3.1 below, but first illustrate Ramanujan’s definition with an explicit example 
given in his last letter to Hardy. Ramanujan’s example involves his mock theta function 
f from (2.8), and the function b he defined by

b(q) := (1 − q)
(
1 − q2) (1 − q3) (1 − q5) · · · (1 − 2q + 2q4 − 2q9 + 2q16 − · · ·

)
.

In more modern language, Ramanujan’s function b may be expressed as b(q) =
q

1
24 η3(τ)/η2(2τ) (q = e2πiτ , τ ∈ H), which is a weight 1/2 modular form up to the 

multiplicative factor q 1
24 . It is not difficult to show that f converges at odd order roots 

of unity, and has singularities at even order roots of unity. Ramanujan claimed that the 
two modular forms ±b cut out these singularities of the mock theta function f . That is, 
Ramanujan claimed that as q approaches an even order 2k primitive root of unity ζ, we 
have (see [18,130])

lim
q→ζ

(
f(q) − (−1)kb(q)

)
= O(1). (4.1)

Following Ramanujan’s death, it remained a question of interest to further understand 
Ramanujan’s claim, especially in recent years with the development of a theory of mock 
modular forms. Using some elements from the theory of mock modular forms, and also 
the theory of q-hypergeometric series, Ramanujan’s claim was refined, proved, and gen-
eralized in [67,68]. In particular, an exact formula for the implied O(1) constants from 
Ramanujan’s claim in (4.1) is given in [67]. As shown in (4.2) these constants are ex-
plicit polynomials in Z[ζ], which at first glance may appear to be rather peculiar. That 
is, from [67], we have that

lim
q→ζ

(
f(q) − (−1)kb(q)

)
= −4

k−1∑
n=0

(1 + ζ)2
(
1 + ζ2)2 · · · (1 + ζn)2 ζn+1. (4.2)

It turns out that these polynomials in ζ on the right-hand side of (4.1) are special values 
of modular-like objects originally defined by Zagier called quantum modular forms [138]. 
Quantum modular forms exhibit a modular-like transformation law not on H, but on Q, 
or perhaps Q \ S for some appropriate set S, up to the addition of suitably continuous 
or analytic error functions in R. If one treats the right-hand side of (4.2) as a function of 
x ∈ Q by replacing ζ = e2πix, and extends the upper limit of summation from k−1 to ∞, 
the resulting function turns out to be an example of a quantum modular form [42,138]. 
Upon replacing x = 1/2k, it is not difficult to show that the infinite sum becomes the 
finite one shown in (4.2).



514 A. Folsom / Journal of Number Theory 176 (2017) 500–540
It is interesting to see mock modular, ordinary modular, and quantum modular forms 
related by the single expression in (4.2). This result, it turns out, is not limited to the 
mock theta function f , and has been generalized to other mock modular forms, including 
the two-variable rank generating function R, in [35,67,99]. We do not give a full treatment 
of the developing subject of quantum modular forms here, but note that there has been 
much recent progress in the area; in addition to the references mentioned above, the 
interested reader may also wish to consult, for example, [22,25,36,92,95,103,123,139].

One sees via Ramanujan’s Definition 4.1, and in (4.1) and (4.2), how mock theta 
functions asymptotically “resemble” modular theta functions. It is also natural to ask 
how the mock theta functions transform under SL2(Z), if at all. Using Poisson sum-
mation, classically used to give modular transformations for ordinary theta functions, 
Watson [130] established the following modular-like transformation property relating f
and ω

q−
1
24 f(q) = 2

√
2π
α
q

4
3
1 ω
(
q2
1
)

+ 4
√

3α
2π

∞∫
0

sinh(αt)
sinh
( 3αt

2
)e− 3αt2

2 dt, (4.3)

where q := e−α, β := π2/α, q1 := e−β (α, β ∈ C with Re(α), Re(β) > 0). If we 
adopt more modern notation and let α = −2πiτ for some τ ∈ H, then (4.3) shows 
a modular-like transformation under τ 	→ −1/(2τ). The relationship shown in (4.3) sug-
gests a vector-valued transformation, up to the error integral involving sinh. Decades 
later, Zwegers [140] made a major breakthrough in understanding the modularity of the 
mock theta functions. For the mock theta functions f and ω in particular, Zwegers pack-
aged them together in a vector, and nicely completed this vector by subtracting from 
it a suitable non-holomorphic vector-valued function. This non-holomorphic subtraction 
compensates for the error to modularity suggested by (4.3).

Before stating Zwegers’ result, we digress for a moment to discuss the term comple-
tion, which we have mentioned a number of times in the narrative thus far. The term can 
be explicitly defined with respect to a given example, but is more implicitly described in 
general. Completed functions, in the sense we have been using the term here, typically 
result from adding another (non-holomorphic) function to a starting function so that the 
resulting sum transforms appropriately on a subgroup of the modular group; moreover, 
this should be done in a non-trivial way. In general, the function added should perhaps 
be simpler in some way than the starting function. For example, the completion of E2(τ)
in (2.4) results from adding the simple function −3/(πv), and the completions of the gen-
erating function for Hurwitz class numbers in (2.5), and Dyson’s rank function in (2.9), 
result from adding period integrals of ordinary modular forms, which we understand the 
modular properties of very well.

Returning to the description of Zwegers’ work, define the vector-valued function F by

F (τ) = (F0(τ), F1(τ), F2(τ))T :=
(
q−

1
24 f(q), 2q 1

3ω
(
q

1
2

)
, 2q 1

3ω
(
−q

1
2

))T
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(where vT denotes the transpose of a vector v), and the vector-valued non-holomorphic 
function G by

G(τ) := 2i
√

3

⎛⎝ i∞∫
−τ

G1(w)√
−i(w + τ)

dw,

i∞∫
−τ

G0(w)√
−i(w + τ)

dw,

i∞∫
−τ

−G2(w)√
−i(w + τ)

dw

⎞⎠T

. (4.4)

Here, the functions G0, G1 and G2 are weight 3/2 theta functions defined by

Gj(τ) :=
∑
n∈Z

(−1)(
j
2+1)n (n + 1

3
)
e3πi
(
n+ 1

3
)2τ if j ∈ {0, 2}, and

G1(τ) := −
∑
n∈Z

(
n + 1

6
)
e
3πi
(
n+1

6
)2

τ
.

Using these functions, Zwegers defined the vector-valued function H by

H(τ) := F (τ) −G(τ),

and he proved the following theorem in [140], which we have slightly rephrased here to 
incorporate the terminology of harmonic Maass forms.

Theorem 4.2. The function H is a vector-valued real-analytic modular form of weight 
1/2 that satisfies the following transformation laws

H(τ + 1) =

⎛⎝ζ−1
24 0 0
0 0 ζ3
0 ζ3 0

⎞⎠H(τ), H (−1/τ) =
√
−iτ

(0 1 0
1 0 0
0 0 −1

)
H(τ).

In particular, H is a vector-valued weight 1/2 harmonic Maass form whose shadow is a 
vector-valued weight 3/2 cuspidal unary theta function.

Zwegers’ result also yields the mock modular properties of Ramanujan’s original mock 
theta functions f and ω individually. For example, the first component of H is a harmonic 
Maass form of weight 1/2 on Γ0(144) with Nebentypus 

(12
·
)
. More generally, Zwegers’ 

work from [140,141] implies the following important result.

Theorem 4.3. Ramanujan’s mock theta functions are (up to multiplication by a power 
of q) weight 1/2 mock modular forms. More precisely, if m is one of Ramanujan’s mock 
theta functions, then

m(τ) = qαM+(τ),

for some α ∈ Q, where M+ is the holomorphic part of a weight 1/2 harmonic Maass 
form whose shadow is a weight 3/2 unary theta function.



516 A. Folsom / Journal of Number Theory 176 (2017) 500–540
The above theorem shows that Ramanujan’s mock theta functions satisfy (up to 
multiplication by a power of q) the modern definition of a mock modular form from 
Section 3. However, it was not confirmed until recently that Ramanujan’s mock theta 
functions actually satisfy his own definition (Definition 4.1) of a mock theta function. 
Using the theory of mock modular forms, Griffin, Ono and Rolen proved that this is 
indeed the case in [87].

Theorem 4.4. Suppose that M = M+ + M− ∈ Hk(Γ1(N)), where k ∈ 1
2Z. If M− is 

non-trivial and g is a weight k weakly holomorphic modular form on Γ1(N ′) for some 
N ′ ∈ N, then there are infinitely many roots of unity ζ for which M+−g has exponential 
growth as q approaches ζ radially from within the unit disk.

As a corollary (see Corollary 1.2 of [87]), recalling Theorem 4.3, it follows that for any 
of Ramanujan’s mock theta functions, there can not be a single (weakly holomorphic) 
modular form as in Definition 4.1 ii) and iii) which carves out all of its singularities. 
Rhoades [122] also recently showed that Ramanujan’s Definition 4.1 of mock theta func-
tion is not equivalent to the modern definition of a mock modular form (for appropriate 
weights) from Section 3.1, by showing that there are two explicit functions V1 and V2
such that either V1 satisfies the modern definition but not Ramanujan’s, or V2 satisfies 
Ramanujan’s definition but not the modern.

5. Zwegers’ μ-function

Generalizing the results described for Ramanujan’s mock theta functions from Sec-
tion 4, Zwegers defined a certain multivariable function he named μ which has since been 
used to construct a strikingly large number of mock modular forms, and to prove mock 
modularity of many functions of interest, including some of the functions discussed in 
Section 2, Section 4, Section 6 and Section 8. In particular, upon suitable specialization 
of parameters, Zwegers’ μ-functions become mock modular forms (see Corollary 5.6). To 
define Zwegers’ μ-functions, we first define the Jacobi theta function. For further details 
on Zwegers’ results discussed in this section, see [141]. In this section, we let ζ = e2πiz, 
and q = e2πiτ .

Definition 5.1. Let z ∈ C and τ ∈ H. The Jacobi theta function ϑ(z) is defined by

ϑ (z; τ) :=
∑

n∈ 1
2+Z

eπin
2τ+2πin

(
z+ 1

2
)
= −iq

1
8 ζ−

1
2

∞∏
n=1

(1 − qn)
(
1 − ζqn−1) (1 − ζ−1qn

)
.

(5.1)

The infinite product expansion given on the right-hand side of (5.1) is known as the 
Jacobi triple product identity. The ϑ-function is an example of a weight 1/2 holomor-
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phic Jacobi form [63], a two-variable function which satisfies both elliptic and modular 
transformation properties, namely

ϑ(z + 1; τ) = −ϑ(z; τ), ϑ(z + τ ; τ) = −e−πiτ−2πizϑ(z; τ),
ϑ(z; τ + 1) = e

πi
4 ϑ(z; τ), ϑ

(
z
τ ;− 1

τ

)
= −i

√
−iτe

πiz2
τ ϑ(z; τ).

(5.2)

Using the Jacobi form ϑ, Zwegers defined his Appell–Lerch sums μ as follows.

Definition 5.2. For τ ∈ H and z1, z2 ∈ C\(Zτ + Z), Zwegers’ μ-function is defined by

μ (z1, z2; τ) := ρ
1
2
1

ϑ (z2; τ)
∑
n∈Z

(−1)nρn2 q
n(n+1)

2

1 − ρ1qn
,

where ρj := e2πizj (j ∈ {1, 2}).

The function μ does not quite transform like a true Jacobi form, but does exhibit 
some mock-like behavior. In particular, Zwegers showed that there is a non-holomorphic 
correction term which can be added to make it transform like a Jacobi form.

Definition 5.3. For z1, z2 ∈ C and τ ∈ H, we define the completed μ-function

μ̂ (z1, z2; τ) := μ (z1, z2; τ) + i

2R (z1 − z2; τ) ,

where (τ = u + iv, z = x + iy),

R(z; τ) :=
∑

n∈ 1
2+Z

(
sgn(n) − 2

(
n+ y

v

)√
2v∫

0

e−πt2dt

)
(−1)n−

1
2 ζ−nq−

n2
2 . (5.3)

We remark, especially in light of Corollary 5.6 below, that it is sometimes more con-
venient to regard the non-holomorphic function R from (5.3) as a period integral as in 
Lemma 3.6. When z is a suitable linear function in τ , this can be done using the following 
weight 3/2 modular theta functions (a, b ∈ R)

ga,b(τ) :=
∑

n∈a+Z

ne2πinbq
n2
2 . (5.4)

To this end, Zwegers established the following result.

Theorem 5.4. For τ ∈ H, a ∈ (−1
2 , 

1
2 ), and b ∈ R, we have that

∞∫
−τ

ga+ 1
2 ,b+

1
2
(w)√

−i(w + τ)
dw = −e−πia2τ+2πia(b+ 1

2 )R(aτ − b; τ).
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A main result from [141], stated as Theorem 5.5 below, shows that Zwegers’ com-
pleted functions μ̂ transform like non-holomorphic Jacobi forms of weight 1/2. For this 
reason, Zwegers’ μ-function is referred to as a mock Jacobi form. Ordinary Jacobi forms 
transform on C ×H, while Zwegers’ μ-functions are defined in C2 ×H, so this statement 
may seem somewhat misleading. However, as suggested by Definition 5.3, the completed 
μ̂-functions can almost be viewed as functions of z1 − z2, rather than of z1 and z2 sepa-
rately, up to the addition of a Jacobi form. See [141, Theorem 1.11 (4)]) and the footnote 
on p. 986-07 of [137].

Theorem 5.5. With notation and hypotheses as above, we have that

i) μ̂ (z1 + kτ + 	, z2τ + mτ + n; τ) = (−1)k+�+m+nq
1
2 (k−m)2(ρ1ρ

−1
2 )k−mμ̂(z1, z2; τ), 

for k, 	, m, n ∈ Z,
ii) μ̂
(

z1
cτ+d ,

z2
cτ+d ; aτ+b

cτ+d

)
= ν−3

η (γ)(cτ + d) 1
2 e−

πic
cτ+d (z1−z2)2 μ̂(z1, z2; τ), for all γ =(

a b
c d

)
∈ SL2(Z), where νη is the multiplier of η,

iii) μ̂(−z1, −z2; τ) = μ̂(z1, z2; τ) = μ̂(z2, z1; τ).

Upon suitable specialization of the parameters z1 and z2 as linear functions in τ , 
Zwegers’ work reveals that the completed μ-functions give rise to harmonic Maass forms. 
Corollary 5.6 is parallel to a result from the theory of ordinary holomorphic Jacobi forms 
due to Eichler and Zagier [63], which shows that specializations of holomorphic Jacobi 
forms give rise to ordinary modular forms.

Corollary 5.6. Let α1, α2, β1, β2 ∈ Q such that (α1, β1), (α2, β2) /∈ Z2. Then as a function 
of τ ∈ H,

e−πi(α1−α2)2τ μ̂ (α1τ + β1, α2τ + β2; τ) (5.5)

is a harmonic Maass form (for some congruence subgroup) of weight 1/2.

Using (2.10) for example, with ζ = −1 (z = 1
2 ), we see how the mock theta function 

f can be written in terms of Zwegers’ μ-function:

f(q) = −2
(

q
1
24 η(3τ)3

η(τ)ϑ(3
2 ; 3τ)

+ q−
1
8μ(3

2 ,−τ ; 3τ) − q−
1
8μ(3

2 , τ ; 3τ)
)
.

Similarly, all of Ramanujan’s mock theta functions can be expressed in terms of μ and 
ordinary modular forms; one can quickly write down exact expressions using work of Gor-
don and McIntosh on their universal mock theta functions [81], and work of Kang [101], 
which expresses Zwegers’ μ-functions in terms of q-hypergeometric functions of Gordon 
and McIntosh.
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As alluded to here and in Section 2, in general, there is an intimate connection 
between q-hypergeometric series and mock modular forms, and understanding this con-
nection more precisely remains a topic of current research interest. A series of papers 
by Lovejoy and Osburn [104–106] offers a valuable approach to this topic, as does the 
recent work [94] by Hickerson and Mortenson. In the former, the authors show how 
to produce q-hypergeometric mock modular forms using elements from the theory of 
q-hypergeometric series; Bailey pairs play particularly prominent roles. In the latter, 
the authors study Appell–Lerch sums and Hecke-type double sums in order to study 
mock theta functions. Zwegers’ thesis [141] too extends beyond the results described 
in this section; he also studies indefinite theta series and Hecke-type double sums, and 
meromorphic Jacobi forms, in relation to mock modular forms. All of these topics play 
prominent roles in the theory and applications of mock modular forms. In addition to 
the references already mentioned in this section, the interested reader may also wish 
to consult, for example, [15,93,115,142] by Andersen, Andrews, Dyson, Hickerson, and 
Zwegers. In the next section, we describe some applications to mathematical physics, all 
of which make use of work of Zwegers.

6. Mathematical physics

In this section, we stray from the foundations of mock modular forms established 
in the previous sections, and turn to some applications. In recent years, mock modular 
forms have been shown to play important roles in mathematical physics. Here, we discuss 
certain applications to S-duality, topological gauge theory, and string theory.

6.1. A conjecture of Vafa and Witten

Certain topological invariant generating functions associated to moduli spaces of co-
herent sheaves on complex surfaces S have been of great interest in physics, due to a 
property called S-duality. S-duality was conjectured in the late 1970s by Montonen and 
Olive [112], as a duality of gauge theory under the group SL2(Z). The setup is to consider 
a moduli space M of semi-stable sheaves, and study the Poincaré polynomials p

p(M, s) :=
2 dimC M∑

j=0
bj(M)sj , (6.1)

and the Euler numbers χ = χ(M) := p(M, −1), where bj(M) := dimHj(M, Z) de-
notes the jth Betti number. Vafa and Witten [128] tested S-duality in the mid-1990s 
in the setting of topologically twisted gauge theory with N = 4 symmetry, and their 
results led them to make a conjecture regarding the modular properties of the asso-
ciated Euler number generating functions when M ∈ {M(2, −1, n), M(2, 0, n)}. Here, 
M(r, c1, c2) denotes the moduli space of semi-stable sheaves of rank r and jth Chern 
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class cj . Their conjectured modular properties strongly supported the S-duality conjec-
ture. The Vafa–Witten conjecture is precisely described in terms of Hurwitz class number 
H(n) generating functions for discriminants −n (j ∈ {0, 1}) (see also Section 2)

hj(τ) :=
∞∑

n=0
H(4n + 3j)qn+ 3j

4 .

Using the theory of mock modular forms, Bringmann and Manschot [31] proved the 
Vafa–Witten conjecture, which we state as Theorem 6.1.

Theorem 6.1. With notation as above, we have that

q−
1
2

∞∑
n=1

χ(M(2,−1, n))qn = 3h1(τ)
η6(τ) , q−

1
4

∞∑
n=2

χ(M(2, 0, n))qn = 3h0(τ)
η6(τ) + 1

4η3(2τ) .

As explained in Section 2, due to Zagier, the generating function for Hurwitz class 
numbers (e.g. the holomorphic part of the function in (2.5)) is a mock modular form; 
similarly, the restricted generating functions hj (j ∈ {0, 1}) are mock modular forms. In 
particular, the following functions are harmonic Maass forms of weight 3/2 (see [31])

ĥj(τ) := hj(τ) + (1 + i)
8π

i∞∫
−τ

∑∞
n=−∞ eπiw(2n+j)2/2

(τ + w) 3
2

dw.

This fact, combined with Theorem 6.1, and the ordinary modular transformation proper-
ties of the η-function, show that the Vafa–Witten generating functions for Euler numbers 
are weight 3/2 mixed mock modular forms [51], that is, they lie in the tensor space of 
mock modular forms and modular forms.

A first step in the proof of Theorem 6.1 given in [31] is deducing closed expressions 
for the generating functions for Poincaré polynomials p(M, s) from (6.1) when M is in 
the set {M(2, −1, n), M(2, 0, n)} in terms of Zwegers’ μ-function (see Definition 5.2). 
The authors of [31] do so by making use of prior work of Yoshioka [133]. For example, 
with ζ = e2πiz,

q−
1
2

∞∑
n=1

p(M(2,−1, n), ζ 1
2 )(qζ−2)n = − (1 − ζ)

ζ
5
2ϑ2(z; τ)

μ(2z − τ, 1
2 − τ − z; 2τ). (6.2)

To specialize the Poincaré polynomial generating functions to the Euler polynomial gen-
erating functions χ(M) from the Vafa–Witten conjecture requires one to take certain 
derivatives of the μ-function in (6.2) in the variable ζ (or equivalently, in z). Using (6.2)
and its counterpart for the numbers M(2, 0, n) yields exact expressions for the Vafa–
Witten Euler number generating functions as (mixed) mock modular forms. To prove 
they are the same (mixed) mock modular forms as those given by the functions on the 
right-hand sides of the two expressions in Theorem 6.1, the authors of [31] use work of 
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Kronecker, Mordell, and Watson to explicitly rewrite the Hurwitz class number gener-
ating functions hj (j ∈ {0, 1}).

An exact formula for the Fourier coefficients of the mixed mock modular forms 
hj(τ)/η6(τ) is also given in [31], similar to the Hardy–Ramanujan–Rademacher exact 
formula for the partition numbers (2.2). For j = 1, by Theorem 6.1, these coefficients are 
(up to a constant multiple) the Euler numbers χ(M(2, −1, n)). We also mention another 
interesting recent related paper, due to Alim, Haghighat, Hecht, Klemm, Rauch, and 
Wotschke [5], which uses the theory of mock modular forms to derive an anomaly equa-
tion for two M5-branes wrapping a rigid divisor inside a Calabi–Yau manifold. Among 
other things, their results make use of work of Göttsche and Zagier [82] on indefinite 
theta functions (see also the discussion at the end of Section 5).

6.2. A conjecture of Moore and Witten

In addition to the topological invariant Poincaré polynomials and Euler numbers, 
mathematical physics has also led to a study of Donaldson invariants and Seiberg–Witten 
invariants. In physics, these invariants are the correlation functions for a supersymmetric 
topological gauge theory with gauge groups SU(2) and SO(3). The Donaldson invariants 
are graded homogeneous polynomials on the homology H0(CP2) ⊕H2(CP2). Witten [132]
explained that the correlation functions should be able to be computed in a “low energy 
effective field theory.” This theory is parameterized by the “u-plane,” a rational elliptic 
surface which should be equal to the modular curve H/Γ0(4), together with a meromor-
phic one-form [125]. Moore and Witten went on to find that the correlation functions 
could be expressed as a regularized integral over the u-plane, where the regularization 
involves constant term contributions from the cusps {0, 2, ∞}. They showed that the 
contributions at 0 and 2 vanish, and made the following conjecture [113].

Conjecture 6.2. The contribution from the cusp ∞ to the regularized u-plane integral is 
the generating function for the Donaldson invariants of CP2.

Moore and Witten [113] computed the first 40 invariants in the SU(2) case as evidence 
towards their conjecture, and also showed relationships between Hurwitz class numbers 
(see Section 2 and Section 6.1), an early instance of a relationship to mock modular forms. 
The conjecture was proved in the case of SO(3), where less was known, by Malmendier 
and Ono in [109], and later in the case of SU(2) by Griffin, Malmendier, and Ono in [85]. 
As was the case with the functions in the previous section (see (6.2)), the strategies used 
to prove the Moore–Witten conjectures involve reformulating the relevant functions in 
terms of Zwegers’ μ-functions and studying their derivatives. The methods used in [109]
for SO(3) and in [85] for SU(2) are similar, so here we limit our discussion to the case of 
SO(3). As a key step in their proof of the Moore–Witten conjecture, the authors of [109]
compute the regularized u-plane integral, and from their computations, deduce that the 
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Moore–Witten conjecture is equivalent to the vanishing of the constant terms for every 
pair (m, n) ∈ N2

0 of a series of the form

θm,n(τ)
n∑

k=0

k∑
j=0

aj,k,nE
k−j
2 (τ)

·
(
bk,nθj(τ)F2(n−k)(τ) + cj,k,nθ

∗(τ)θn−k(τ)
(
q
d

dq

)j
Q+(τ)
)
. (6.3)

All of the functions in (6.3) are explicitly defined in [109]: aj,k,n, bk,n and cj,k,n are 
constants, E2 is the Eisenstein series discussed in Section 2, and the functions θm,n, θj , 
and θ∗ are ordinary modular forms. The function Q+ is the holomorphic part of a certain 
harmonic Maass form of weight 1/2, which the authors re-write in terms of Zwegers’ 
μ-functions (see Definition 5.2) as follows:

Q+(τ) = 2iq− 1
8μ(−2τ,−τ − 1

2 ; 4τ) − 2iq− 1
8μ(−2τ,−3τ − 1

2 ; 4τ) + g(τ),

where g is an explicit weakly holomorphic ordinary modular form. Similarly, the func-
tions Ft in (6.3) may be expressed as a product of the t-th derivative of a Zwegers 
μ-function, multiplied by an ordinary modular theta function. When n = 0, the sum 
in (6.3) collapses. One is left with a difference of two harmonic Maass forms of weight 
1/2 with the same non-holomorphic parts, which is therefore an ordinary weakly holo-
morphic modular form. The proof in this case follows by an explicit calculation. For 
n > 0 one encounters derivatives of the μ-function from the functions Ft, and this gives 
rise to a similar to but more complicated proof than the case n = 0 just described.

Malmendier continued the work from [109] in his paper [107]. Namely, he computed 
the regularized u-plane integral on CP1 × CP1, and determined the explicit formulas 
for the SU(2) and SO(3) Donaldson invariants of CP1 ×CP1 in terms of mock modular 
forms. Malmendier and Ono [108] also made a connection between a certain “Moonshine” 
mock modular form (see (8.3)) originally studied by Eguchi, Ooguri, and Tachikawa [62]
which we discuss in Section 8, and the SO(3) Donaldson invariants for CP2.

6.3. Quantum black holes

The quantum theory of black holes is of interest within the context of string theory. 
It is expected that certain counting functions for quantum degeneracies of black hole 
horizons are modular, and from a physical perspective, modular symmetry properties 
are essential for understanding the quantum entropy of these black holes. One obtains 
such information from a Hardy–Ramanujan–Rademacher-type expansion for the degen-
eracies, similar to the expression for p(n) given in (2.2). When there is a “wall-crossing” 
phenomenon, something we elaborate upon more below, the situation is more compli-
cated from the points of view of both physics and number theory. Dabholkar, Murthy, 
and Zagier address this in [51], and we describe some of their findings here. One of their 
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main results applies to a certain meromorphic Jacobi form which counts quarter-BPS 
states in N = 4 string theories. As described in Section 5, Jacobi forms are two-variable 
functions which exhibit both modular and elliptic transformation properties. (See [63] for 
a formal definition.) For example, the function ϑ in (5.1) is a holomorphic Jacobi form, 
and some of its transformation properties are shown in (5.2). The authors of [51] study 
the meromorphic Jacobi forms ψm(z; τ) which arise as the Fourier–Jacobi coefficients of 
a meromorphic Siegel modular form. That is,

1
Φ10 (Ω) =

∞∑
m=−1

ψm(z; τ)e2πiσm, (6.4)

where Φ10 is the Igusa cusp form of weight 10. Here, Ω lies in the Siegel upper half-space 
of degree 2, defined by H2 := {Ω =

( τ z
z σ

)
∈ M2(C) | Im(τ), Im(σ), det(Im(Ω)) > 0}. 

We omit the formal definition of (degree 2) Siegel modular forms here, but note that 
they are analogous to ordinary modular forms in that they satisfy a symmetry property 
F (g ◦ Ω) = det(CΩ + D)kF (Ω) with respect to the action of elements g =

(
A B
C D

)
of a 

symplectic group on H2. See for example [63] for more on Siegel modular and Jacobi 
forms.

The fact that the Jacobi forms ψm from (6.4) are meromorphic, as opposed to holo-
morphic, is intertwined with wall-crossing, and turns out to dictate a relationship to 
mock modular forms, as opposed to ordinary modular forms. A main application of the 
more general results proved in [51] show that the Fourier–Jacobi coefficients ψm (m ≥ 1)
naturally decompose as a sum of two parts

ψm = ψP
m + ψF

m.

This decomposition should not be confused with the decomposition of a harmonic Maass 
form as a sum of a holomorphic part and a non-holomorphic part (see Section 3). Here, 
the two parts ψP

m and ψF
m are referred to as the polar part and the finite part, respectively. 

The polar part ψP
m is completely determined by the poles of ψm. The finite part ψF

m is 
a finite linear combination of (mixed) mock modular forms f∗

m,� multiplied by Jacobi 
theta functions ϑm,�

ψF
m(z; τ) =

∑
� (mod 2m)

f∗
m,�(τ)ϑm,�(z; τ).

In this way, we view the finite part ψF as a (mixed) mock Jacobi form. From the point 
of view of physics, this result from [51] shows that the degeneracies d∗(	, m, n) (Im(σ) =
2n/ε, Im(τ) = 2m/ε, Im(z) = −	/ε) of single centered black holes with magnetic charge 
invariant (M2/2 = m) are Fourier coefficients of a (mixed) mock Jacobi form of index m. 
That is,

d∗(n, 	,m) =
∫

eπi�
2τ/2mf∗

m,�(τ)dτ,
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where the integral is over an interval of length one (Im(τ) is fixed). From the point of 
view of both number theory and physics, the wall-crossing behavior exhibited by the 
degeneracies is the same as that of the Fourier coefficients of the meromorphic Jacobi 
forms, and this is the origin of their connection. The wall-crossing behavior comes from 
the polar part ψP

m, which is shown to equal the Appell–Lerch sum

A2,m(z; τ) :=
∞∑

s=−∞

qms2+sζ2ms+1

(1 − qsζ)2 (6.5)

divided by a constant multiple of the modular Δ-function (Δ := η24). The wall crossing 
phenomenon is seen in the fact that A2,m has different Fourier expansions depending on 
which interval n < Im(z)/Im(τ) < n +1 (i.e., for which integer n) the ratio Im(z)/Im(τ)
lies in. From a physical perspective, wall crossing may be interpreted in terms of counting 
two-centered black holes.

Dabholkar, Murthy and Zagier generalize their findings above for the forms ψm in [51], 
which we summarize in the following theorem. The number m ∈ N seen in what follows 
is the index of the Jacobi form ϕ (see [51,63]).

Theorem 6.3. Let ϕ be a meromorphic Jacobi form with simple poles at z = zs = ατ +β, 
s = (α, β) ∈ S ⊆ Q2, and with Fourier coefficients h(−�τ/2m)

� (τ), where for z0 ∈ C,

h
(z0)
� (τ) = q−�2/4m

z0+1∫
z0

ϕ(z; τ)e−2πi�zdz.

Then ϕ has the decomposition

ϕ(z; τ) = ϕF (z; τ) + ϕP (z; τ)

into a “finite part” ϕF and a “polar part” ϕP . Each h(−�τ/2m)
� is a mixed mock modular 

form, and ϕF is a mixed mock Jacobi form.

We reiterate that the two “parts” shown in Theorem 6.3 should not be confused with 
the holomorphic and non-holomorphic parts of a harmonic Maass form. In [51], the polar 
parts ϕP are expressed in terms of the residues of ϕ and universal Appell–Lerch sums, 
which are essentially due to Zwegers [141, Definition 3.2]. In general, these functions 
resemble (6.5), and are meromorphic mock Jacobi forms of weight 1. The finite parts ϕF

are expressed in terms of the h(z0)
� and holomorphic Jacobi theta functions as follows:

ϕF (z; τ) =
∑

� (mod 2m)

h
(−�τ/2m)
� (τ) ϑm,�(z; τ). (6.6)

This expression for ϕF nicely extends what is known for holomorphic Jacobi forms. 
Namely, holomorphic Jacobi forms admit a theta decomposition (see equation (5) of 
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Chapter II, § 5 in [63]), which is nearly identical to the meromorphic Jacobi finite part 
ϕF in (6.6), save for the fact that the analogues to the functions h(z0)

� which arise in 
the holomorphic setting are ordinary modular forms, while in the meromorphic setting 
they are mixed mock modular forms. Since there are no poles in the holomorphic setting, 
the holomorphic analogue of the meromorphic polar part ϕP is identically zero. For an 
extension of Theorem 6.3 for meromorphic Jacobi forms with higher order poles, and 
an application to representation theory, see [23]; more recent related works than [23]
include [117] by Olivetto, and [143], by Zwegers. The work of Dabholkar, Murthy and 
Zagier in [51] (some of which extends work of Zwegers from [141]), sheds much light 
on the theory of meromorphic Jacobi forms and mock modular forms; while strongly 
motivated by its applications to theoretical physics, it is also of independent number 
theoretic interest.

7. Number theory

In this section, we offer some number theoretic applications of mock modular forms. 
In Section 7.1, we discuss some recent work of Duke, Imamoḡlu, and Tóth on cycle 
integrals and mock modular forms, in Section 7.2 we discuss recent work of Alfes, Griffin, 
Guerzhoy, Ono, and Rolen on elliptic curves and mock modular forms, and in Section 7.3, 
we discuss work of Bruinier and Ono on Borcherds products and mock modular forms. 
For additional number theoretic consequences of the development of the theory of mock 
modular forms not mentioned in this article, we refer the reader to the works [24,52,118,
137] mentioned in Section 1.

7.1. Cycle integrals

A lauded result of Zagier [135] relates traces of singular moduli arising from quadratic 
forms with negative discriminants to Fourier coefficients of modular forms. To describe 
this, let jm(τ) (m ∈ N0) denote the unique basis element for C[j] satisfying jm(τ) =
q−m + O(q). Here, j = j(τ) = q−1 + 744 + 196884q + . . . is the modular invariant 
function. Then we have that j0 = 1, j1 = j − 744, j2 = j2 − 1488j + 159768, and so on. 
The twisted traces of these functions are twisted, weighted sums evaluated at CM points 
in H. Precisely, for negative discriminants d and fundamental positive discriminants D,

Trd,D(jm) := D− 1
2
∑

Q∈Γ\QdD

χ(Q)|ΓQ|−1jm(τQ), (7.1)

where QΔ is the set of discriminant Δ positive definite integral binary quadratic forms 
Q = Q(x, y) = ax2 + bxy + cy2 (a, b, c ∈ Z), and τQ is the unique number in H that 
is a root of Q(x, 1). Here, Γ := PSL2(Z), a group which naturally acts on QdD, and 
ΓQ := Aut(Q). The sum (7.1) (including the character χ) is well-defined on Γ\QdD. 
See [88] for more details on these ingredients used to form (7.1). Zagier showed that the 
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twisted traces may be expressed in terms of Fourier coefficients of modular forms. That 
is,

Trd,D(jm) =
∑
n|m

(
D

m/n

)
na(n2D, d),

where {gd}d>0, gd(τ) = −q−d +
∑

n≤0 a(d, n)q|n|, are a basis of weakly holomorphic 
modular forms of weight 3/2 and level 4. Equivalently, the forms {fd}d≤0, with Fourier 
coefficients a(n, d) defined by

fd(τ) = qd +
∞∑

n=1
a(n, d)qn, (7.2)

constructed with the dual coefficients (with d and n interchanged) turn out to coincide 
with Borcherds’ basis for weakly holomorphic modular forms of the dual weight 2 −3/2 =
1/2 and level 4. The first terms in the expansions of the first few such functions are

f0(τ) = 1 + 2q + 2q4 + 2q9 + · · · (7.3)

f−3(τ) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 + · · · (7.4)

f−4(τ) = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + · · ·

f−7(τ) = q−7 − 4119q + 8288256q4 − 52756480q5 + · · · .

It is natural to ask if there are analogues to Zagier’s results for positive discriminants 
dD. One first needs an appropriate analogue of (7.1) in this setting, and then a modular 
family which encodes the “traces” in their Fourier coefficients. Duke, Imamoḡlu, and 
Tóth beautifully answer this question in [54]. They define an extension of the function 
in (7.1) to positive discriminants using cycle integrals as follows:

T̃rd,D(jm) :=

⎧⎪⎪⎨⎪⎪⎩
Trd,D(jm), d < 0,

(2π)−1
∑

Q∈Γ\QdD

χ(Q)
∫
CQ

jm(τ)(Q(τ, 1))−1dτ, d > 0, (7.5)

where the cycle integral of jm above is taken over any smooth curve CQ from a point 
z ∈ H to the point γz, where γ = γQ is a certain generator of ΓQ. Some of the main 
results from [54] show how these “traces” for positive coefficients are related to Fourier 
coefficients of a basis of mock modular forms. We summarize some results of Duke, 
Imamoḡlu, and Tóth from [54] in the following theorem.

Theorem 7.1. With notation as above, the following are true.

i) For each positive discriminant d there is a unique mock modular form fd with 
shadow gd, with Fourier expansion of the form
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fd(τ) =
∞∑

n=1
a(n, d)qn. (7.6)

Moreover, the set {fd}d>0 forms a basis for the space of mock modular forms of 
weight 1/2 and level 4 (in the plus space).

ii) For any integer d ≡ 0, 1 (mod 4), and fundamental discriminant D > 0 with dD not 
a square,

T̃rd,D(jm) =
∑
n|m

(
D

m/n

)
na(n2D, d),

where for d < 0, the coefficients a(n, d) are as defined in (7.2), and for d > 0, the 
coefficients a(n, d) are as defined in (7.6).

Rephrasing this another way, Theorem 7.1 gives a certain basis of mock modular 
forms of weight 1/2 with shadows given by Zagier’s weakly holomorphic modular forms 
of weight 3/2, and whose Fourier coefficients are given in terms of cycle integrals of the 
modular j-function. The authors prove Theorem 7.1 in [54] using the delicate theory of 
Poincaré series, and Kloosterman sums. The work in [54] has inspired and is related to a 
number of additional interesting recent works, including [6,26,39,53,55,110] by Andersen, 
Bringmann, Bruinier, Duke, Funke, Guerzhoy, Imamoḡlu, Kane, Masri, and Tóth. More-
over, the results from [54] are not limited to Theorem 7.1. For example, another result 
from [54] is a lifting result; the authors study certain holomorphic modular integrals of 
weight 2 which can be viewed as Shimura-type lifts of mock modular forms of weight 1/2, 
and which give quadratic analogues to Borcherds products. In Section 7.3 and Section 8, 
we also mention lifts and Borcherds products with respect to mock modular forms and 
Moonshine.

7.2. Elliptic curves

Classically, we have that an elliptic curve E ∼= C/ΛE , where ΛE is a two-dimensional 
lattice in C, is parameterized by the Weierstrass ℘-function via the mapping z 	→
(℘(ΛE ; z), ℘′(ΛE ; z)). The Weierstrass ζ-function

ζ(ΛE ; z) := 1
z

+
∑

w∈ΛE\{0}

(
1

z − w
+ 1

w
+ z

w2

)

also plays a role in the theory of elliptic curves. For example, it has an addition law 
ζ(ΛE ; z1 + z2) = ζ(ΛE ; z1) + ζ(ΛE ; z2) + P (ΛE ; z1, z2) (where P is a certain rational 
function in ℘ and ℘′) which can be interpreted in terms of the group law of E. The 
Weierstrass ζ-function is not lattice invariant, but Eisenstein [131] observed that it could 
be corrected in a similar way to how mock modular forms can be completed to form a 
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(non-holomorphic) modular form by adding a suitable non-holomorphic function (see 
Sections 3–5). Eisenstein’s corrected function is defined by

zE(z) := ζ(ΛE ; z) − S(ΛE)z − π

a(ΛE)z,

where a(ΛE) is the area of a fundamental parallelogram for ΛE, and

S(ΛE) := lim
s→0+

∑
w∈ΛE\{0}

w−2|w|−2s.

In his study of a differential equation due to Kaneko and Zagier, Guerzhoy [90,91] first 
showed how the Weierstrass ζ-function could be used to construct a weight 0 harmonic 
Maass form associated to an elliptic curve over Q. Alfes, Griffin, Ono and Rolen extended 
Guerzhoy’s work in [4], which we now describe. The idea, stemming from Guerzhoy’s 
construction in [91], is that Eisenstein’s correction zE to the Weierstrass ζ-function gives 
rise to a weight 0 harmonic Maass form. The Maass form is obtained by specializing zE at 
z 	→ EE(τ) (τ ∈ H), where EE is an Eichler integral associated to E, and then subtracting 
a canonical modular function. More precisely, for an elliptic curve E over Q, its Eichler 
integral is defined in terms of its associated weight 2 newform FE(τ) =

∑∞
n=1 aE(n)qn

as follows

EE(τ) = −2πi
i∞∫
τ

FE(w)dw =
∞∑

n=1

aE(n)
n

qn.

The authors of [4] define the function ẑE(τ) := zE(EE(τ)) (for τ ∈ H) to be the spe-
cialization of Eisenstein’s zE-function at the Eichler integral EE(τ). The function ẑE(τ)
decomposes into a sum of a holomorphic part plus a non-holomorphic part, parts which 
we denote by ẑ±E(τ). We summarize a main theorem from [4] in Theorem 7.2.

Theorem 7.2. With notation as above, the following are true.

i) The poles of ẑ+E(τ) are precisely those τ for which EE(τ) ∈ ΛE.
ii) If ẑ+E(τ) has poles in H, then there is a canonical modular function BE(τ) with 

algebraic coefficients for which ẑ+E(τ) −BE(τ) is holomorphic on H.
iii) The function ẑE(τ) −BE(τ) is a weight 0 harmonic Maass form with level equal to 

the conductor of E. In particular, ẑ+E(τ) is a weight 0 mock modular form.

In addition to giving rise to a harmonic Maass form, it turns out that the function 
ẑE(τ) encodes information about the vanishing and non-vanishing of central L-values 
and derivatives. Such a connection between harmonic Maass forms (of weight 1/2) and 
L-values and derivatives was first made by Bruinier and Ono in [40], however computing 
their Maass forms poses some non-trivial difficulties. (See also [41] by Bruinier and 
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Stromberg for more on computing harmonic Maass forms.) Using a Siegel theta function 
originally studied by Hövel [96], the authors of [4] define a twisted theta lift, which lifts 
their weight 0 harmonic Maass forms to weight 1/2 harmonic Maass forms fE . These 
weight 1/2 theta lifts have Fourier expansions as in Lemma 3.2 (with k = 1/2), and we 
let c±E(n) denote their Fourier coefficients. We have the following result from [4].

Theorem 7.3. Let E be an elliptic curve over Q with prime conductor p and sign of 
functional equation −1. Let d be any fundamental discriminant such that 

(
d
p

)
= 1, and 

let Ed be the quadratic twist of E. The following are true.

i) If d < 0, then L(Ed, 1) = 0 if and only if c−E(d) = 0.
ii) If d > 0, then L′(Ed, 1) = 0 if and only if c+E(d) is in Q.

As remarked in [4], by known results towards the Birch and Swinnerton-Dyer Con-
jecture, this shows for fundamental discriminants with 

(
d
p

)
= 1 such that d < 0 and 

c−E(d) �= 0, we have that the rank of Ed(Q) is 0; if d > 0 and c+E(d) is transcendental, 
then the rank of Ed(Q) is 1.

7.3. Borcherds products

A celebrated result of Borcherds shows that the space of weight 1/2 modular forms 
in Kohnen’s plus space (e.g. with integer coefficient Fourier expansions supported on 
certain residue classes (mod 4)) is in natural bijection with the set MH of integer weight 
meromorphic modular forms of level 1 with integer coefficients, leading coefficient 1, 
and with Heegner divisor, meaning their divisors are supported at ∞ and CM points. 
See [20,135] for further details on some of the results described in this section. Here are 
two examples to illustrate Borcherds’ result. Consider the weight 1/2 forms f̃0 := 12f0
and f̃−3 := 3f−3, where f0 and f−3 are as defined in (7.3) and (7.4). If we define the 
coefficient of qr in the Fourier expansion of f̃j (j ∈ {0, −3}) by cj(r), then Borcherds’ 
theorem implies that the functions

Ψ(f̃0) := q
∞∏

n=1
(1 − qn)c0(n

2) = q
∞∏

n=1
(1 − qn)24 = q − 24q2 + 252q3 + . . .

Ψ(f̃−3) := q−1
∞∏

n=1
(1 − qn)c−3(n2) = q−1(1 − q)−744(1 − q2)80256 . . .

= q−1 + 744 + 196884q + . . .

are in MH . Borcherds’ product defining Ψ(f̃0) is visibly equal to the modular form 
Δ = η24 of weight 12. Moreover, by considering the divisor of the resulting function, 
it follows that Ψ(f̃−3) = j(τ), the modular invariant function, as suggested by the first 
few terms in the Fourier expansion given above. These are examples of Borcherds’ more 
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general theorem, which we now summarize. To describe this, we let H+(τ) denote the 
holomorphic part of Zagier’s Eisenstein series from (2.5). For a weight 1/2 form g in 
Kohnen’s plus space, we let bg denote the constant term in the Fourier expansion of 
g(τ)H+(τ).

Theorem 7.4. Let g(τ) =
∑

n c(n)qn be in Kohnen’s plus space M+
1
2
(Γ0(4)), and define

Ψ(g(τ)) := q−bg

∞∏
n=1

(1 − qn)c(n
2).

Then Ψ(g) ∈ MH , and has weight c(0). Moreover, the map Ψ : M+
1
2
(Γ0(4)) → MH is 

an isomorphism.

In fact, Borcherds’ results do more than what is stated in Theorem 7.4. For example, 
he also gives the multiplicity of zeros at CM points.

Bruinier and Ono provide an analogous Borcherds-like lift for mock modular forms 
in [40]. We first illustrate their general result with an example involving Ramanujan’s 
mock theta function ω as defined in (2.12). Define the coefficients a(n) by

−2q 1
3

(
ω(q 1

2 ) + ω(−q
1
2 )
)

=:
∑

n∈ 1
3+Z

a(n)qn = −4q 1
3 − 12q 4

3 − 24q 7
3 − 40q 10

3 − · · · .

In [40] it is shown that

∞∏
n=1

(
1 +

√
−2qn − q2n

1 −
√
−2qn − q2n

)(n
3
)
a(n2/3)

= 1 − 8
√
−2q − (64 − 24

√
−2)q2 + (384 + 168

√
−2)q3 + · · ·

is a meromorphic modular form of weight 0, whose divisor can be determined explicitly. 
Moreover, this function can be written down explicitly in terms of the holomorphic Eisen-
stein series E4, and two functions on Γ∗

0(6): the Hauptmodul, and the unique normalized 
cusp form of weight 4.

The general mock modular lifting theorem from [40] is stated for vector valued forms 
and certain Weil representations. Many technical ingredients are required to properly 
state it, and we refer the reader to [40] for explicit details. Briefly speaking, the result is 
a lifting result on weight k < 1 harmonic Maass forms with respect to the metaplectic 
group Γ̃ := Mp2(Z), and Weil representations ρL for certain even lattices L. These 
types of harmonic Maass forms are defined in an analogous way to ordinary harmonic 
Maass forms (see Definition 3.1): they are twice-continuously differentiable, satisfy a 
suitable transformation law, namely M(γτ) = φ(τ)2kρL(γ, φ)M(τ) for all (γ, φ) ∈ Γ̃, are 
annihilated by Δk, and satisfy appropriate growth conditions in the cusps. If L′ denotes 
the dual of L, the lifting result from is stated for fundamental discriminants Δ ≡ r2
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(mod 4N), and harmonic Maass forms of weight 1/2 with respect to Γ̃ and ρ̃L, where ρ̃L
is equal to ρL or ρL, depending on whether or not Δ > 0. This space of harmonic Maass 
forms is denoted by H1/2,ρ̃L

. As we see in Theorem 7.5 below, the Borcherds-like products 
from [40] are taken over 0 < λ ∈ K ′, where K is a one dimensional lattice arising from 
L satisfying K ′/K ∼= L′/L. A main result from [40], generalizing the example above for 
the mock theta function ω, is as follows.

Theorem 7.5. Let M ∈ H1/2,ρ̃L
be a harmonic Maass form with real coefficients c+(m, h)

for all m ∈ Q and h ∈ L′/L, and c+(n, h) ∈ Z for all n ≤ 0. Then the product

ΨΔ,r(τ,M) = e((ρM,�, τ))
∏

0<λ∈K′

∏
b(Δ)

(1 − e((λ, τ) + b/Δ))
(Δ

b

)
(c+(|Δ|λ2/2,rλ))

is a meromorphic modular form on Γ0(N) with weight c+(0, 0) or 0, depending on whether 
or not Δ is equal to 1.

In addition to the references given above, there are a number of other related lifting 
results to which we refer the interested reader, such as works by Alfes, Bruinier, Choie, 
Duke, Ehlen, Funke, Jenkins, Kim, Li, and Lim [3,38,48,56,57,102].

8. Moonshine

One of the most beautiful and well-known results relating representations of groups 
and ordinary modular forms is given by “Monstrous Moonshine”. Throughout this sec-
tion, we refer the reader to the articles by Gannon [73], Borcherds [21], and Duncan–
Griffin–Ono [58] for more on the history of this topic. The adjective “monstrous” arises 
from the monster group M, largest of the finite sporadic simple groups with over 8 ×1053

elements. In the 1970s, Conway and Norton [49] made a surprising conjecture, beginning 
with observations of McKay and Thompson, relating the dimensions of the irreducible 
representations of M to the Fourier coefficients of the modular j-function. To describe 
this, let ρn denote the n-th smallest irreducible representation of M, and let δn denote 
its dimension. Moreover, let β(k) denote the coefficient of qk in the Fourier expansion 
of the modular j-function j(τ) = q−1 + 744 + 196884q + · · · (where q = e2πiτ as usual). 
Some of McKay’s and Thompson’s observations [127] are as follows:

196884 = β(1) = δ1 + δ2, 21493760 = β(2) = δ1 + δ2 + δ3,

864299970 = β(3) = 2δ1 + 2δ2 + δ3 + δ4,

where δ1 = 1, δ2 = 196883, δ3 = 21296876, δ4 = 842609326.
These observations of McKay and Thompson can be interpreted as evidence of a 

grading, in which case the dimensions are graded traces of the identity element e ∈ M. 
That is, there should be an infinite-dimensional graded module V =

⊕∞
n=0 Vn for the 

Monster at work, with subspaces V0 = ρ1, V1 = ∅, V2 = ρ1 ⊕ ρ2, V3 = ρ1 ⊕ ρ2 ⊕ ρ3, etc. 
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so that the module V should have graded dimension dimV (q) = q(j(τ) − 744). It was 
surmised that studying the graded traces of other elements g ∈ M (not just g = e) may 
also be of interest. The McKay–Thompson series Tg(q) for elements g ∈ M are defined 
to have coefficients given by these graded traces, normalized so that Te(q) + 744 should 
equal the modular j-function. The Monstrous Moonshine Conjecture claimed that for 
any g ∈ M, the McKay–Thompson series Tg is a Hauptmodul, that is, a generator of 
a genus zero modular function field. Atkin, Fong, and Smith [126], Griess [83,84], and 
Frenkel, Lepowsky, and Meurman [69,70], established key results towards the conjecture. 
In particular, Frenkel–Lepowsky–Meurman constructed a module V �, a vertex operator 
algebra, whose graded dimension is given by q(j(τ) − 744) and whose automorphism 
group equal to M. Borcherds famously proved the Monstrous Moonshine Conjecture 
many years later [19], by reconciling the module V � with that fact that all Hauptmoduls 
satisfy replication formulas, meaning that their coefficients satisfy certain recursions. 
With respect to the j-function, replication formulas can be captured by the following 
identity [135] (ζ = e2πiz):

j(z) − j(τ) = ζ−1
∏
m>0
n∈Z

(1 − ζmqn)β
∗(mn), (8.1)

where β∗(k) := β(k) if k �= 0, and β∗(0) := 0. For example, one recursion satisfied by 
the coefficients β(k) which is implied by (8.1) is

β(4n + 2) = β(2n + 2) +
n∑

k=1

β(k)β(2n− k + 1). (8.2)

Conway and Norton conjectured analogous formulas for all McKay–Thompson series Tg, 
which would mean that each Tg is determined by only finitely many Fourier coefficients. 
For his proof, Borcherds defined a Lie algebra, which inherits the action of M from V �. 
Remarkably, it turned out that Borcherds’ monster Lie algebra has associated denomi-
nator identity given by (8.1). A “twisting” procedure by the elements g ∈ M led to the 
other conjectured replication identities for each Thompson series Tg.

Further generalizations and extensions of “classical” Monstrous Moonshine have 
since been explored (see [50] and [73], for example). Also since the time of Monstrous 
Moonshine, we have recently made contact with mock modular forms within a simi-
lar framework. The tale of mock modular Moonshine begins with Eguchi, Ooguri, and 
Tachikawa [62], who made similar observations to those of McKay and Thompson. In 
this case, the largest sporadic simple Mathieu group M24 plays the role of the monster 
group M; they observed that dimensions of representations of M24 are the multiplici-
ties of superconformal algebra characters in the K3 elliptic genus. An expansion of the 
elliptic genus led to the mock modular form

− 8i
(
μ(1

2 ,
1
2 ; τ) + μ(1+τ

2 , 1+τ
2 ; τ) + μ( τ2 ,

τ
2 ; τ)
)

(8.3)

= 2q− 1
8
(
−1 + 45q + 231q2 + 770q3 + 2277q4 + . . .

)
,



A. Folsom / Journal of Number Theory 176 (2017) 500–540 533
expressed in terms of Zwegers’ μ-functions (see Definition 5.2), which plays the role of 
the j-function in the original Moonshine. The first few q-coefficients shown in (8.3) are 
dimensions of irreducible representations of M24. This led to the conjectured existence of 
an infinite-dimensional graded M24-module, such that the graded dimensions are the co-
efficients of the mock modular form in (8.3). Moreover, the analogous McKay–Thompson 
series formed using the graded traces for general g ∈ M24 should be mock modular forms. 
Beautiful work by Gannon [74] proved the existence of this module, following work of 
Cheng [44], Eguchi and Hikami [61], and Gaberdiel, Hohenegger, and Volpato [71,72]. 
Cheng, Duncan, and Harvey [45,46] later formulated the Umbral Moonshine Conjectures, 
which conjecture the existence of even more additional graded infinite-dimensional mod-
ules relating finite groups and mock modular forms, extending the result just described. 
These new modules arise from Niemeier lattices. A result of Niemeier [116] shows that 
up to isomorphism, there are 24 even unimodular positive-definite lattices of rank 24, 
one of which is the Leech lattice, and the others of which have roots systems of full rank, 
called Niemeier root systems. Attached to such a root system X is an umbral group GX , 
and vector valued modular forms (HX

g,r(τ))r, g ∈ GX . When X = A24
1 , then GX ∼= M24, 

and (HX
g,r)r is a four-dimensional vector indexed by r ∈ Z/4Z. For this X, HX

g,r = 0 for 
r ≡ 0 (mod 2), and HX

g,r = −HX
g,−r, thus, the entire vector is determined by HX

g,1. For 
each g ∈ M24, these are exactly the mock modular forms from [44,61,71,72]. Generalizing 
work from Eguchi, Ooguri, and Tachikawa, we have the following “Umbral” conjecture 
of Cheng, Duncan, and Harvey [45,46,58,59].

Conjecture 8.1. Let X be a Niemeier root system, and m = mX the Coxeter number of 
any simple component of X. Then there is a bi-graded infinite-dimensional GX-module

ǨX =
⊕

r∈IX⊆Z/2mZ

⊕
D≤0

D≡r2 (mod 4m)

ǨX
r,−D/4m

such that the vector-valued mock modular form (HX
g,r(τ))r is a McKay–Thompson series 

for ǨX related to the graded trace of g on ǨX by

HX
g,r(τ) − 2q−1/4mδr,1 +

∑
D≤0

D≡r2 (mod 4m)

tr(g | ǨX
r,−D/4m)q−D/4m.

As mentioned, Gannon [74] proved the conjecture in the case of X = A24
1 , and 

in [59], Duncan, Griffin, and Ono proved the remaining cases of the conjecture. 
Their proof adapts some of Gannon’s methods, and also requires recent work of 
Imamoḡlu–Raum–Richter [97] and Mertens [111] on the principle of holomorphic pro-
jection, which stems from original work on the topic by Gross and Zagier [89]. For the 
sake of brevity, we define this concept in Definition 8.2 below but refrain from explicitly 
stating the technical growth conditions which the functions g must satisfy, and also the 
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definition of the constant c0 = cg0. Both of these things may be found in [89,97,111]. 
Recall that τ = u + iv ∈ H.

Definition 8.2. Let g : H → C be a (not necessarily holomorphic) modular form on some 
Γ0(N) with integer weight k ≥ 2, and Fourier expansion

g(τ) =
∞∑

n=−∞
ag(n, v)qn.

If g additionally exhibits suitable growth conditions, the holomorphic projection of g, 
πholg, is defined by

(πholg)(τ) = (πk
holg)(τ) := c0 +

∞∑
n=1

c(n)qn,

where for n ∈ N,

c(n) = cg(n) := (4πn)k−1

(k − 2)!

∞∫
0

ag(n, v)e−4πnvvk−2dv.

The holomorphic projection operator is aptly named, as indicated by the following 
theorem (see [89,97,111]).

Theorem 8.3. Let g be as in Definition 8.2. The following are true.

i) If g is holomorphic, then πholg = g.
ii) If k ≥ 4, then the holomorphic projection πholg is a holomorphic modular form of 

weight k. If k = 2, then πholg is a quasimodular form of weight 2.

(As briefly mentioned in Section 2, quasimodular forms were originally defined by 
Kaneko and Zagier [100], and the holomorphic Eisenstein series E2 is an example of such 
a form.)

A main ingredient to the proof of Umbral Moonshine from [59,74] is to show that the 
mock modular forms HX

g,r(τ) are replicable. In this case, the authors of [59] establish 
replicability via the principle of holomorphic projection just discussed. To give a taste 
of what holomorphic projection can lead to in the mock modular setting, we describe a 
recent result of Imamoḡlu, Raum, and Richter. For n ∈ N, it was shown in [97] that the 
coefficients αf (n) of Ramanujan’s mock theta function f(q) from (2.8) satisfy∑

3m2+m≤2n

(m + 1
6 )αf (n− 3

2m
2 − 1

2m) = 4
3σ(n) − 16

3 σ(n2 ) − 2
∑

2n=ab

d∗(Na,b, Ña,b),

(8.4)
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where σ(n) is equal to the sum of divisors of n or 0, depending on whether or not 
n is an integer, Na,b, Ña,b are explicitly defined linear functions in a and b, and d∗ is 
linearly defined in terms of Na,b and Ña,b. The coefficients σ in (8.4) arise from the 
quasimodular form E2, and the terms involving d∗(N, Ñ) arise from integrals coming 
from the non-holomorphic part of the completion of the mock modular form f (see 
Section 2, Section 4, and Section 5). Using the principle of holomorphic projection, 
similar recursions to (8.4) are found in [59] for the coefficients of the mock modular 
forms in the Umbral Conjecture 8.1.

There have since been further developments related to Umbral Moonshine, and, there 
is still much to explore on the algebraic side of the story. In addition to the works already 
mentioned in this section, see, for example, recent work by Cheng, Griffin, Harrison, 
Mertens, Ono, Persson, Rolen, Trebat-Leder, and Volpato [47,86,120,121].

Closing remarks. In closing, we urge the interested reader to survey the literature, and 
to consult the references below, for more developments beyond those mentioned in this 
article on the continuously expanding theory of mock modular forms, and their applica-
tions to number theory and other areas of mathematics. The last century, especially the 
last 15 years, has shown many advances in the subject, which remains an active area of 
research today.
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